Spaces:
Configuration error
Configuration error
# Stock Price Prediction App | |
Welcome to the Stock Price Prediction App! This app allows you to visualize stock price data, explore technical indicators, and make short-term price predictions using machine learning models. | |
Created and designed by [Vikas Sharma](https://www.linkedin.com/in/vikas-sharma005/). | |
## Table of Contents | |
- [Description](#description) | |
- [Features](#features) | |
- [Setup](#setup) | |
- [Usage](#usage) | |
- [Technologies](#technologies) | |
- [License](#license) | |
## Description | |
The Stock Price Prediction App is a Streamlit-based web application that provides users with tools to analyze historical stock price data, visualize technical indicators, and make short-term price predictions using different machine learning models. | |
## Features | |
- **Visualize Technical Indicators**: Explore various technical indicators such as Bollinger Bands, MACD, RSI, SMA, and EMA to gain insights into stock price trends. | |
- **Recent Data Display**: View the most recent data of the selected stock, including the last 10 data points. | |
- **Price Prediction**: Predict future stock prices using machine learning models including Linear Regression, Random Forest Regressor, Extra Trees Regressor, KNeighbors Regressor, and XGBoost Regressor. | |
## Setup | |
1. Clone the repository: | |
```sh | |
git clone https://github.com/vikasharma005/Stock-Price-Prediction.git | |
``` | |
2. Navigate to the project directory: | |
```sh | |
cd stock-price-prediction-app | |
``` | |
3. Install the required Python packages using pip: | |
```sh | |
pip install -r requirements.txt | |
``` | |
## Usage | |
1. Run the Streamlit app: | |
```sh | |
streamlit run app.py | |
``` | |
2. The app will open in your default web browser. Use the sidebar to choose options for visualization, recent data display, or making price predictions. | |
3. Follow the on-screen instructions to input the stock symbol, select a date range, and choose technical indicators or prediction models. | |
## Technologies | |
- Python | |
- Streamlit | |
- pandas | |
- yfinance | |
- ta (Technical Analysis Library) | |
- scikit-learn | |
- XGBoost | |
## Author | |
<div id="header" align="center"> | |
<img src="https://media.giphy.com/media/M9gbBd9nbDrOTu1Mqx/giphy.gif" width="100"/> | |
</div> | |
<h3 align="center">Hi there 👋, I'm Vikas</h3> | |
<h4 align="center">Just learning New Skills😀</h4> | |
<div id="socials" align="center"> | |
<a href="https://www.linkedin.com/in/vikas-sharma005"> | |
<img src="https://user-images.githubusercontent.com/76098066/186728913-a66ef85f-4644-4e3a-b847-98309c8cff42.svg"> | |
</a> | |
<a href="https://www.instagram.com/_thisisvikas"> | |
<img src="https://user-images.githubusercontent.com/76098066/186728908-f1a9919a-f4b2-4262-9515-683e77f8aabf.svg"> | |
</a> | |
<a href="https://twitter.com/hitechvikas05"> | |
<img src="https://user-images.githubusercontent.com/76098066/186728901-a4d90f01-2cdf-45c1-a1b3-73467c3d2698.svg"> | |
</a> | |
</div> | |
You can find more about me and my projects on my [GitHub profile](https://github.com/vikasharma005). | |
## License | |
This project is licensed under the [MIT License](LICENSE). | |
--- | |