abcd / app.py
shylusakthi's picture
Create app.py
b9f07ca verified
raw
history blame
1.21 kB
import streamlit as st
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Load the HealthScribe Clinical Note Generator model and tokenizer
@st.cache_resource
def load_model():
model_name = "har1/HealthScribe-Clinical_Note_Generator"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
return model, tokenizer
model, tokenizer = load_model()
st.title("HealthScribe Clinical Note Generator")
st.write("Generate clinical notes based on input text.")
# Input section
input_text = st.text_area("Enter patient information or medical notes:", height=200)
if st.button("Generate Clinical Note"):
if input_text.strip():
# Tokenize and generate
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
outputs = model.generate(inputs["input_ids"], max_length=512, num_beams=5, early_stopping=True)
generated_note = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Display the result
st.subheader("Generated Clinical Note")
st.write(generated_note)
else:
st.warning("Please enter some text to generate a clinical note.")