Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
# Load the HealthScribe Clinical Note Generator model and tokenizer | |
def load_model(): | |
model_name = "har1/HealthScribe-Clinical_Note_Generator" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
return model, tokenizer | |
model, tokenizer = load_model() | |
st.title("HealthScribe Clinical Note Generator") | |
st.write("Generate clinical notes based on input text.") | |
# Input section | |
input_text = st.text_area("Enter patient information or medical notes:", height=200) | |
if st.button("Generate Clinical Note"): | |
if input_text.strip(): | |
# Tokenize and generate | |
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True) | |
outputs = model.generate(inputs["input_ids"], max_length=512, num_beams=5, early_stopping=True) | |
generated_note = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Display the result | |
st.subheader("Generated Clinical Note") | |
st.write(generated_note) | |
else: | |
st.warning("Please enter some text to generate a clinical note.") | |