Spaces:
Runtime error
Runtime error
File size: 9,190 Bytes
2a6a910 3b85b9a 2a6a910 3b85b9a a38ae12 2a6a910 3b85b9a 2a6a910 826e03f 2a6a910 8781a5b a38ae12 4d55ef2 8781a5b 2a6a910 8781a5b 2a6a910 1cfb0d6 8781a5b 1cfb0d6 8781a5b 40ccb44 1cfb0d6 a38ae12 40ccb44 2a6a910 826e03f 8781a5b 1cfb0d6 8781a5b 2a6a910 8781a5b 2a6a910 1cfb0d6 8781a5b 2a6a910 826e03f 8781a5b 1cfb0d6 8781a5b 1cfb0d6 8781a5b 1cfb0d6 8781a5b 2a6a910 8781a5b 3b85b9a 2a6a910 1cfb0d6 2a6a910 41ebd25 2a6a910 8781a5b 2a6a910 8781a5b 2a6a910 1cfb0d6 3b85b9a 2a6a910 3b85b9a 2a6a910 41ebd25 3b85b9a 2a6a910 d08d04d 8781a5b 2a6a910 d08d04d 8781a5b 2a6a910 d08d04d 8781a5b 2a6a910 d08d04d 8781a5b 2a6a910 d08d04d 8781a5b 2a6a910 3b85b9a 8781a5b 2a6a910 40ccb44 2a6a910 0ffc0ad 09f41cc 74834a7 1a4f7ce 09f41cc 8781a5b 1cfb0d6 8781a5b 09f41cc 2a6a910 c91582d 2a6a910 1cfb0d6 2a6a910 c91582d 2a6a910 1cfb0d6 2a6a910 1cfb0d6 c91582d 2a6a910 1cfb0d6 f1d1439 1cfb0d6 2a6a910 40ccb44 a34fa3a 2a6a910 3b85b9a 2a6a910 1cfb0d6 2a6a910 1cfb0d6 2a6a910 8781a5b 2a6a910 3b85b9a 2a6a910 1cfb0d6 2a6a910 1cfb0d6 2a6a910 71a369c 2a6a910 09f41cc 2a6a910 8781a5b 09f41cc 2a6a910 8781a5b 2a6a910 8781a5b 2a6a910 8781a5b 2a6a910 0b05515 2a6a910 3b85b9a 40ccb44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
#!/usr/bin/env python
from __future__ import annotations
import os
import string
import gradio as gr
import PIL.Image
import spaces
import torch
from transformers import AutoProcessor, Blip2ForConditionalGeneration
DESCRIPTION = "# [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2)"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
MODEL_ID_OPT_2_7B = "Salesforce/blip2-opt-2.7b"
MODEL_ID_OPT_6_7B = "Salesforce/blip2-opt-6.7b"
MODEL_ID_FLAN_T5_XL = "Salesforce/blip2-flan-t5-xl"
MODEL_ID_FLAN_T5_XXL = "Salesforce/blip2-flan-t5-xxl"
MODEL_ID = os.getenv("MODEL_ID", MODEL_ID_FLAN_T5_XXL)
assert MODEL_ID in [MODEL_ID_OPT_2_7B, MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XL, MODEL_ID_FLAN_T5_XXL]
if torch.cuda.is_available():
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = Blip2ForConditionalGeneration.from_pretrained(MODEL_ID, device_map="auto", load_in_8bit=True)
@spaces.GPU
def generate_caption(
image: PIL.Image.Image,
decoding_method: str = "Nucleus sampling",
temperature: float = 1.0,
length_penalty: float = 1.0,
repetition_penalty: float = 1.5,
max_length: int = 50,
min_length: int = 1,
num_beams: int = 5,
top_p: float = 0.9,
) -> str:
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
generated_ids = model.generate(
pixel_values=inputs.pixel_values,
do_sample=decoding_method == "Nucleus sampling",
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
top_p=top_p,
)
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
return result
@spaces.GPU
def answer_question(
image: PIL.Image.Image,
prompt: str,
decoding_method: str = "Nucleus sampling",
temperature: float = 1.0,
length_penalty: float = 1.0,
repetition_penalty: float = 1.5,
max_length: int = 50,
min_length: int = 1,
num_beams: int = 5,
top_p: float = 0.9,
) -> str:
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
generated_ids = model.generate(
**inputs,
do_sample=decoding_method == "Nucleus sampling",
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
top_p=top_p,
)
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
return result
def postprocess_output(output: str) -> str:
if output and output[-1] not in string.punctuation:
output += "."
return output
def chat(
image: PIL.Image.Image,
text: str,
decoding_method: str = "Nucleus sampling",
temperature: float = 1.0,
length_penalty: float = 1.0,
repetition_penalty: float = 1.5,
max_length: int = 50,
min_length: int = 1,
num_beams: int = 5,
top_p: float = 0.9,
history_orig: list[str] = [],
history_qa: list[str] = [],
) -> tuple[list[tuple[str, str]], list[str], list[str]]:
history_orig.append(text)
text_qa = f"Question: {text} Answer:"
history_qa.append(text_qa)
prompt = " ".join(history_qa)
output = answer_question(
image=image,
prompt=prompt,
decoding_method=decoding_method,
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
top_p=top_p,
)
output = postprocess_output(output)
history_orig.append(output)
history_qa.append(output)
chat_val = list(zip(history_orig[0::2], history_orig[1::2]))
return chat_val, history_orig, history_qa
examples = [
[
"images/house.png",
"How could someone get out of the house?",
],
[
"images/flower.jpg",
"What is this flower and where is it's origin?",
],
[
"images/pizza.jpg",
"What are steps to cook it?",
],
[
"images/sunset.jpg",
"Here is a romantic message going along the photo:",
],
[
"images/forbidden_city.webp",
"In what dynasties was this place built?",
],
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
image = gr.Image(type="pil")
with gr.Tabs():
with gr.Tab(label="Image Captioning"):
caption_button = gr.Button("Caption it!")
caption_output = gr.Textbox(label="Caption Output", show_label=False, container=False)
with gr.Tab(label="Visual Question Answering"):
chatbot = gr.Chatbot(label="VQA Chat", show_label=False)
history_orig = gr.State(value=[])
history_qa = gr.State(value=[])
vqa_input = gr.Text(label="Chat Input", show_label=False, max_lines=1, container=False)
with gr.Row():
clear_chat_button = gr.Button("Clear")
chat_button = gr.Button("Submit", variant="primary")
with gr.Accordion(label="Advanced settings", open=False):
text_decoding_method = gr.Radio(
label="Text Decoding Method",
choices=["Beam search", "Nucleus sampling"],
value="Nucleus sampling",
)
temperature = gr.Slider(
label="Temperature",
info="Used with nucleus sampling.",
minimum=0.5,
maximum=1.0,
step=0.1,
value=1.0,
)
length_penalty = gr.Slider(
label="Length Penalty",
info="Set to larger for longer sequence, used with beam search.",
minimum=-1.0,
maximum=2.0,
step=0.2,
value=1.0,
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
info="Larger value prevents repetition.",
minimum=1.0,
maximum=5.0,
step=0.5,
value=1.5,
)
max_length = gr.Slider(
label="Max Length",
minimum=20,
maximum=512,
step=1,
value=50,
)
min_length = gr.Slider(
label="Minimum Length",
minimum=1,
maximum=100,
step=1,
value=1,
)
num_beams = gr.Slider(
label="Number of Beams",
minimum=1,
maximum=10,
step=1,
value=5,
)
top_p = gr.Slider(
label="Top P",
info="Used with nucleus sampling.",
minimum=0.5,
maximum=1.0,
step=0.1,
value=0.9,
)
gr.Examples(
examples=examples,
inputs=[image, vqa_input],
outputs=caption_output,
fn=generate_caption,
)
caption_button.click(
fn=generate_caption,
inputs=[
image,
text_decoding_method,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
num_beams,
top_p,
],
outputs=caption_output,
api_name="caption",
)
chat_inputs = [
image,
vqa_input,
text_decoding_method,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
num_beams,
top_p,
history_orig,
history_qa,
]
chat_outputs = [
chatbot,
history_orig,
history_qa,
]
vqa_input.submit(
fn=chat,
inputs=chat_inputs,
outputs=chat_outputs,
).success(
fn=lambda: "",
outputs=vqa_input,
queue=False,
api_name=False,
)
chat_button.click(
fn=chat,
inputs=chat_inputs,
outputs=chat_outputs,
api_name="chat",
).success(
fn=lambda: "",
outputs=vqa_input,
queue=False,
api_name=False,
)
clear_chat_button.click(
fn=lambda: ("", [], [], []),
inputs=None,
outputs=[
vqa_input,
chatbot,
history_orig,
history_qa,
],
queue=False,
api_name="clear",
)
image.change(
fn=lambda: ("", [], [], []),
inputs=None,
outputs=[
caption_output,
chatbot,
history_orig,
history_qa,
],
queue=False,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()
|