Pyramid-Flow / diffusion_schedulers /scheduling_cosine_ddpm.py
sironagasuyagi's picture
Upload folder using huggingface_hub
910e2ad verified
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import SchedulerMixin
@dataclass
class DDPMSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: torch.Tensor
class DDPMCosineScheduler(SchedulerMixin, ConfigMixin):
@register_to_config
def __init__(
self,
scaler: float = 1.0,
s: float = 0.008,
):
self.scaler = scaler
self.s = torch.tensor([s])
self._init_alpha_cumprod = torch.cos(self.s / (1 + self.s) * torch.pi * 0.5) ** 2
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
def _alpha_cumprod(self, t, device):
if self.scaler > 1:
t = 1 - (1 - t) ** self.scaler
elif self.scaler < 1:
t = t**self.scaler
alpha_cumprod = torch.cos(
(t + self.s.to(device)) / (1 + self.s.to(device)) * torch.pi * 0.5
) ** 2 / self._init_alpha_cumprod.to(device)
return alpha_cumprod.clamp(0.0001, 0.9999)
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`): input sample
timestep (`int`, optional): current timestep
Returns:
`torch.Tensor`: scaled input sample
"""
return sample
def set_timesteps(
self,
num_inference_steps: int = None,
timesteps: Optional[List[int]] = None,
device: Union[str, torch.device] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`Dict[float, int]`):
the number of diffusion steps used when generating samples with a pre-trained model. If passed, then
`timesteps` must be `None`.
device (`str` or `torch.device`, optional):
the device to which the timesteps are moved to. {2 / 3: 20, 0.0: 10}
"""
if timesteps is None:
timesteps = torch.linspace(1.0, 0.0, num_inference_steps + 1, device=device)
if not isinstance(timesteps, torch.Tensor):
timesteps = torch.Tensor(timesteps).to(device)
self.timesteps = timesteps
def step(
self,
model_output: torch.Tensor,
timestep: int,
sample: torch.Tensor,
generator=None,
return_dict: bool = True,
) -> Union[DDPMSchedulerOutput, Tuple]:
dtype = model_output.dtype
device = model_output.device
t = timestep
prev_t = self.previous_timestep(t)
alpha_cumprod = self._alpha_cumprod(t, device).view(t.size(0), *[1 for _ in sample.shape[1:]])
alpha_cumprod_prev = self._alpha_cumprod(prev_t, device).view(prev_t.size(0), *[1 for _ in sample.shape[1:]])
alpha = alpha_cumprod / alpha_cumprod_prev
mu = (1.0 / alpha).sqrt() * (sample - (1 - alpha) * model_output / (1 - alpha_cumprod).sqrt())
std_noise = randn_tensor(mu.shape, generator=generator, device=model_output.device, dtype=model_output.dtype)
std = ((1 - alpha) * (1.0 - alpha_cumprod_prev) / (1.0 - alpha_cumprod)).sqrt() * std_noise
pred = mu + std * (prev_t != 0).float().view(prev_t.size(0), *[1 for _ in sample.shape[1:]])
if not return_dict:
return (pred.to(dtype),)
return DDPMSchedulerOutput(prev_sample=pred.to(dtype))
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.Tensor,
) -> torch.Tensor:
device = original_samples.device
dtype = original_samples.dtype
alpha_cumprod = self._alpha_cumprod(timesteps, device=device).view(
timesteps.size(0), *[1 for _ in original_samples.shape[1:]]
)
noisy_samples = alpha_cumprod.sqrt() * original_samples + (1 - alpha_cumprod).sqrt() * noise
return noisy_samples.to(dtype=dtype)
def __len__(self):
return self.config.num_train_timesteps
def previous_timestep(self, timestep):
index = (self.timesteps - timestep[0]).abs().argmin().item()
prev_t = self.timesteps[index + 1][None].expand(timestep.shape[0])
return prev_t