mervenoyan's picture
initial commit
b46f888
raw
history blame
6.2 kB
import numpy as np
import matplotlib.pyplot as plt
from threading import Thread
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.datasets import make_blobs, make_circles, make_moons
import gradio as gr
import math
from functools import partial
import time
import matplotlib
from sklearn import svm
from sklearn.datasets import make_moons, make_blobs
from sklearn.covariance import EllipticEnvelope
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor
from sklearn.linear_model import SGDOneClassSVM
from sklearn.kernel_approximation import Nystroem
from sklearn.pipeline import make_pipeline
### DATASETS
def normalize(X):
return StandardScaler().fit_transform(X)
# Example settings
n_samples = 300
outliers_fraction = 0.15
n_outliers = int(outliers_fraction * n_samples)
n_inliers = n_samples - n_outliers
#### MODELS
def get_groundtruth_model(X, labels):
# dummy model to show true label distribution
class Dummy:
def __init__(self, y):
self.labels_ = labels
return Dummy(labels)
############
# Define datasets
blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2)
DATA_MAPPING = {
"Central Blob":make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0],
"Two Blobs": make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0],
"Blob with Noise": make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, 0.3], **blobs_params)[0],
"Moons": 4.0
* (
make_moons(n_samples=n_samples, noise=0.05, random_state=0)[0]
- np.array([0.5, 0.25])
),
"Noise": 14.0 * (np.random.RandomState(42).rand(n_samples, 2) - 0.5),
}
NAME_CLF_MAPPING = {"Robust covariance": EllipticEnvelope(contamination=outliers_fraction),
"One-Class SVM": svm.OneClassSVM(nu=outliers_fraction, kernel="rbf", gamma=0.1),
"One-Class SVM (SGD)":make_pipeline(
Nystroem(gamma=0.1, random_state=42, n_components=150),
SGDOneClassSVM(
nu=outliers_fraction,
shuffle=True,
fit_intercept=True,
random_state=42,
tol=1e-6,
),
),
"Isolation Forest": IsolationForest(contamination=outliers_fraction, random_state=42),
"Local Outlier Factor": LocalOutlierFactor(n_neighbors=35, contamination=outliers_fraction),
}
###########################################################
# Compare given classifiers under given settings
DATASETS = [
make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0],
make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0],
make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, 0.3], **blobs_params)[0],
4.0
* (
make_moons(n_samples=n_samples, noise=0.05, random_state=0)[0]
- np.array([0.5, 0.25])
),
14.0 * (np.random.RandomState(42).rand(n_samples, 2) - 0.5),
]
########################################################
###########
#### PLOT
FIGSIZE = 7,7
figure = plt.figure(figsize=(25, 10))
i = 1
def train_models(selected_data, clf_name):
xx, yy = np.meshgrid(np.linspace(-7, 7, 150), np.linspace(-7, 7, 150))
clf = NAME_CLF_MAPPING[clf_name]
plt.figure(figsize=(len(NAME_CLF_MAPPING) * 2 + 4, 12.5))
plot_num = 1
rng = np.random.RandomState(42)
X = DATA_MAPPING[selected_data]
X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0)
t0 = time.time()
clf.fit(X)
t1 = time.time()
# fit the data and tag outliers
if clf_name == "Local Outlier Factor":
y_pred = clf.fit_predict(X)
else:
y_pred = clf.fit(X).predict(X)
# plot the levels lines and the points
if clf_name != "Local Outlier Factor": # LOF does not implement predict
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors="black")
colors = np.array(["#377eb8", "#ff7f00"])
plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred + 1) // 2])
plt.xlim(-7, 7)
plt.ylim(-7, 7)
plt.xticks(())
plt.yticks(())
plt.text(
0.99,
0.01,
("%.2fs" % (t1 - t0)).lstrip("0"),
transform=plt.gca().transAxes,
size=15,
horizontalalignment="right",
)
plot_num += 1
return plt
description = "Learn how different anomaly detection algorithms perform in different datasets."
def iter_grid(n_rows, n_cols):
# create a grid using gradio Block
for _ in range(n_rows):
with gr.Row():
for _ in range(n_cols):
with gr.Column():
yield
title = "🕵️‍♀️ compare anomaly detection algorithms 🕵️‍♂️"
with gr.Blocks() as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description)
input_models = list(NAME_CLF_MAPPING)
input_data = gr.Radio(
choices=["Central Blob", "Two Blobs", "Blob with Noise", "Moons", "Noise"],
value="Moons"
)
counter = 0
for _ in iter_grid(5, 5):
if counter >= len(input_models):
break
input_model = input_models[counter]
plot = gr.Plot(label=input_model)
fn = partial(train_models, clf_name=input_model)
input_data.change(fn=fn, inputs=[input_data], outputs=plot)
counter += 1
demo.launch(enable_queue=True, debug=True)