|
import spaces |
|
import gradio as gr |
|
import time |
|
import torch |
|
|
|
from PIL import Image |
|
from segment_utils import( |
|
segment_image, |
|
restore_result, |
|
) |
|
from enhance_utils import enhance_image |
|
from diffusers import ( |
|
StableDiffusionInstructPix2PixPipeline, |
|
EulerAncestralDiscreteScheduler, |
|
DDIMScheduler, |
|
) |
|
|
|
BASE_MODEL = "timbrooks/instruct-pix2pix" |
|
|
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
DEFAULT_EDIT_PROMPT = "hair to linen-blonde-hair" |
|
|
|
DEFAULT_CATEGORY = "hair" |
|
|
|
basepipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( |
|
BASE_MODEL, |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
) |
|
|
|
basepipeline.scheduler = DDIMScheduler.from_config(basepipeline.scheduler.config) |
|
|
|
basepipeline = basepipeline.to(DEVICE) |
|
|
|
basepipeline.enable_model_cpu_offload() |
|
|
|
@spaces.GPU(duration=15) |
|
def image_to_image( |
|
input_image: Image, |
|
edit_prompt: str, |
|
seed: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
image_guidance_scale: float, |
|
): |
|
run_task_time = 0 |
|
time_cost_str = '' |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
|
|
generator = torch.Generator(device=DEVICE).manual_seed(seed) |
|
generated_image = basepipeline( |
|
generator=generator, |
|
prompt=edit_prompt, |
|
image=input_image, |
|
guidance_scale=guidance_scale, |
|
image_guidance_scale=image_guidance_scale, |
|
num_inference_steps=num_steps, |
|
).images[0] |
|
|
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
enhanced_image = enhance_image(generated_image, False) |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
return enhanced_image, time_cost_str |
|
|
|
def get_time_cost(run_task_time, time_cost_str): |
|
now_time = int(time.time()*1000) |
|
if run_task_time == 0: |
|
time_cost_str = 'start' |
|
else: |
|
if time_cost_str != '': |
|
time_cost_str += f'-->' |
|
time_cost_str += f'{now_time - run_task_time}' |
|
run_task_time = now_time |
|
return run_task_time, time_cost_str |
|
|
|
def create_demo() -> gr.Blocks: |
|
with gr.Blocks() as demo: |
|
croper = gr.State() |
|
with gr.Row(): |
|
with gr.Column(): |
|
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT) |
|
generate_size = gr.Number(label="Generate Size", value=512) |
|
with gr.Column(): |
|
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps") |
|
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale") |
|
with gr.Column(): |
|
image_guidance_scale = gr.Slider(minimum=0, maximum=30, value=1.5, step=0.1, label="Image Guidance Scale") |
|
with gr.Accordion("Advanced Options", open=False): |
|
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True) |
|
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation") |
|
seed = gr.Number(label="Seed", value=8) |
|
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) |
|
g_btn = gr.Button("Edit Image") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="Input Image", type="pil") |
|
with gr.Column(): |
|
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False) |
|
download_path = gr.File(label="Download the output image", interactive=False) |
|
with gr.Column(): |
|
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False) |
|
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False) |
|
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) |
|
|
|
g_btn.click( |
|
fn=segment_image, |
|
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation], |
|
outputs=[origin_area_image, croper], |
|
).success( |
|
fn=image_to_image, |
|
inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, image_guidance_scale], |
|
outputs=[generated_image, generated_cost], |
|
).success( |
|
fn=restore_result, |
|
inputs=[croper, category, generated_image], |
|
outputs=[restored_image, download_path], |
|
) |
|
|
|
return demo |