Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import torch | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, pipeline | |
from colpali_engine.models import ColPali, ColPaliProcessor | |
from huggingface_hub import login | |
import os | |
# Set device for computation | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Get Hugging Face token from environment variables | |
hf_token = os.getenv('HF_TOKEN') | |
# Log in to Hugging Face Hub (this will authenticate globally) | |
login(token=hf_token) | |
# Use pipeline for image-to-text task | |
try: | |
image_to_text_pipeline = pipeline("image-to-text", model="google/paligemma-3b-mix-448", device=0 if torch.cuda.is_available() else -1) | |
except Exception as e: | |
raise Exception(f"Error loading image-to-text model: {e}") | |
# Load ColPali model with Hugging Face token | |
try: | |
model_colpali = ColPali.from_pretrained("vidore/colpali-v1.2", torch_dtype=torch.bfloat16).to(device) | |
processor_colpali = ColPaliProcessor.from_pretrained("google/paligemma-3b-mix-448") | |
except Exception as e: | |
raise Exception(f"Error loading ColPali model or processor: {e}") | |
# Load Qwen model | |
try: | |
model_qwen = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct").to(device) | |
processor_qwen = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
except Exception as e: | |
raise Exception(f"Error loading Qwen model or processor: {e}") | |
# Function to process the image and extract text | |
def process_image(image, keyword): | |
try: | |
# Debugging: Check the type of the input image | |
print(f"Received image of type: {type(image)}") | |
# Use the image-to-text pipeline to extract text from the image | |
output_text_img_to_text = image_to_text_pipeline(image) | |
# Debugging: Check the output of the image-to-text model | |
print(f"Output from image-to-text pipeline: {output_text_img_to_text}") | |
# Prepare input for Qwen model for image description | |
conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image."}]}] | |
text_prompt = processor_qwen.apply_chat_template(conversation, add_generation_prompt=True) | |
inputs_qwen = processor_qwen(text=[text_prompt], images=[image], padding=True, return_tensors="pt").to(device) | |
# Generate response with Qwen model | |
with torch.no_grad(): | |
output_ids_qwen = model_qwen.generate(**inputs_qwen, max_new_tokens=128) | |
generated_ids_qwen = [output_ids_qwen[len(input_ids):] for input_ids, output_ids_qwen in zip(inputs_qwen.input_ids, output_ids_qwen)] | |
output_text_qwen = processor_qwen.batch_decode(generated_ids_qwen, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
# Debugging: Check the output from the Qwen model | |
print(f"Output from Qwen model: {output_text_qwen}") | |
extracted_text = output_text_img_to_text[0]['generated_text'] | |
# Keyword search in the extracted text | |
keyword_found = "" | |
if keyword: | |
if keyword.lower() in extracted_text.lower(): | |
keyword_found = f"Keyword '{keyword}' found in the text." | |
else: | |
keyword_found = f"Keyword '{keyword}' not found in the text." | |
return extracted_text, output_text_qwen[0], keyword_found | |
except Exception as e: | |
return str(e), "", "" | |
# Define Gradio Interface | |
title = "OCR and Document Search Web Application" | |
description = "Upload an image containing text in both Hindi and English for OCR processing and keyword search." | |
# Gradio interface for input and output | |
image_input = gr.inputs.Image(type="pil") | |
keyword_input = gr.inputs.Textbox(label="Enter a keyword to search in the extracted text (Optional)") | |
output_textbox = gr.outputs.Textbox(label="Extracted Text") | |
output_description = gr.outputs.Textbox(label="Qwen Model Description") | |
output_keyword_search = gr.outputs.Textbox(label="Keyword Search Result") | |
# Set up Gradio interface layout | |
interface = gr.Interface( | |
fn=process_image, # Function to call when button is pressed | |
inputs=[image_input, keyword_input], # Input types (image and keyword) | |
outputs=[output_textbox, output_description, output_keyword_search], # Outputs (text boxes for results) | |
title=title, | |
description=description | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
interface.launch(share=True) | |