Spaces:
Runtime error
Runtime error
import gradio as gr | |
import whisper | |
from pytube import YouTube | |
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration | |
class GradioInference(): | |
def __init__(self): | |
self.sizes = list(whisper._MODELS.keys()) | |
self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values())) | |
self.current_size = "base" | |
self.loaded_model = whisper.load_model(self.current_size) | |
self.yt = None | |
self.summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") | |
# Initialize VoiceLabT5 model and tokenizer | |
self.keyword_model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords") | |
self.keyword_tokenizer = T5Tokenizer.from_pretrained("Voicelab/vlt5-base-keywords") | |
# Sentiment Classifier | |
self.classifier = pipeline("text-classification") | |
def __call__(self, link, lang, size): | |
if self.yt is None: | |
self.yt = YouTube(link) | |
path = self.yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4") | |
if lang == "none": | |
lang = None | |
if size != self.current_size: | |
self.loaded_model = whisper.load_model(size) | |
self.current_size = size | |
results = self.loaded_model.transcribe(path, language=lang) | |
# Perform summarization on the transcription | |
transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False) | |
# Extract keywords using VoiceLabT5 | |
task_prefix = "Keywords: " | |
input_sequence = task_prefix + results["text"] | |
input_ids = self.keyword_tokenizer(input_sequence, return_tensors="pt", truncation=False).input_ids | |
output = self.keyword_model.generate(input_ids, no_repeat_ngram_size=3, num_beams=4) | |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True) | |
keywords = [x.strip() for x in predicted.split(',') if x.strip()] | |
label = self.classifier(results["text"])[0]["label"] | |
return results["text"], transcription_summary[0]["summary_text"], keywords, label | |
def populate_metadata(self, link): | |
self.yt = YouTube(link) | |
return self.yt.thumbnail_url, self.yt.title | |
def from_audio_input(self, lang, size, audio_file): | |
if lang == "none": | |
lang = None | |
if size != self.current_size: | |
self.loaded_model = whisper.load_model(size) | |
self.current_size = size | |
results = self.loaded_model.transcribe(audio_file, language=lang) | |
# Perform summarization on the transcription | |
transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False) | |
# Extract keywords using VoiceLabT5 | |
task_prefix = "Keywords: " | |
input_sequence = task_prefix + results["text"] | |
input_ids = self.keyword_tokenizer(input_sequence, return_tensors="pt", truncation=False).input_ids | |
output = self.keyword_model.generate(input_ids, no_repeat_ngram_size=3, num_beams=4) | |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True) | |
keywords = [x.strip() for x in predicted.split(',') if x.strip()] | |
label = self.classifier(results["text"])[0]["label"] | |
return results["text"], transcription_summary[0]["summary_text"], keywords, label | |
gio = GradioInference() | |
title = "Youtube Insights" | |
description = "Your AI-powered video analytics tool" | |
block = gr.Blocks() | |
with block as demo: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 500px; margin: 0 auto;"> | |
<div> | |
<h1>Youtube <span style="color: red;">Insights</span> ๐น</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Your AI-powered video analytics tool | |
</p> | |
</div> | |
""" | |
) | |
with gr.Group(): | |
with gr.Tab("From YouTube"): | |
with gr.Box(): | |
with gr.Row().style(equal_height=True): | |
size = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base') | |
lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none") | |
link = gr.Textbox(label="YouTube Link", placeholder="Enter YouTube link...") | |
title = gr.Label(label="Video Title") | |
with gr.Row().style(equal_height=True): | |
img = gr.Image(label="Thumbnail") | |
text = gr.Textbox(label="Transcription", placeholder="Transcription Output...", lines=10).style(show_copy_button=True, container=True) | |
with gr.Row().style(equal_height=True): | |
summary = gr.Textbox(label="Summary", placeholder="Summary Output...", lines=5).style(show_copy_button=True, container=True) | |
keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output...", lines=5).style(show_copy_button=True, container=True) | |
label = gr.Label(label="Sentiment Analysis") | |
with gr.Row().style(equal_height=True): | |
clear = gr.ClearButton([link, title, img, text, summary, keywords, label], scale=1) | |
btn = gr.Button("Get video insights", variant='primary', scale=1) | |
btn.click(gio, inputs=[link, lang, size], outputs=[text, summary, keywords, label]) | |
link.change(gio.populate_metadata, inputs=[link], outputs=[img, title]) | |
with gr.Tab("From Audio file"): | |
with gr.Box(): | |
with gr.Row().style(equal_height=True): | |
size = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base') | |
lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none") | |
audio_file = gr.Audio(type="filepath") | |
with gr.Row().style(equal_height=True): | |
text = gr.Textbox(label="Transcription", placeholder="Transcription Output...", lines=10).style(show_copy_button=True, container=False) | |
# with gr.Row().style(equal_height=True): | |
summary = gr.Textbox(label="Summary", placeholder="Summary Output", lines=5) | |
keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output", lines=5) | |
label = gr.Label(label="Sentiment Analysis") | |
with gr.Row().style(equal_height=True): | |
clear = gr.ClearButton([text], scale=1) | |
btn = gr.Button("Get video insights", variant='primary', scale=1) # Updated button label | |
btn.click(gio.from_audio_input, inputs=[lang, size, audio_file], outputs=[text, summary, keywords, label]) | |
with block: | |
gr.Markdown("About the app:") | |
with gr.Accordion("What is YouTube Insights?", open=False): | |
gr.Markdown("YouTube Insights is a tool developed with academic purposes only, that creates summaries, keywords and sentiments analysis based on YouTube videos or user audio files.") | |
with gr.Accordion("How does it work?", open=False): | |
gr.Markdown("Works by using OpenAI's Whisper, DistilBART for summarization and VoiceLabT5 for Keyword Extraction.") | |
gr.HTML(""" | |
<div style="text-align: center; max-width: 500px; margin: 0 auto;"> | |
<p style="margin-bottom: 10px; font-size: 96%"> | |
2023 Master in Big Data & Data Science - Universidad Complutense de Madrid | |
</p> | |
</div> | |
""") | |
demo.launch() |