File size: 7,607 Bytes
ee0d33f
 
1ee9ade
038645c
ee0d33f
1ee9ade
 
 
 
 
 
 
4a20ca6
f7ea072
 
038645c
f7ea072
 
bb850d5
 
 
1ee9ade
 
 
 
ee0d33f
1ee9ade
 
ee0d33f
1ee9ade
 
 
79513d7
1ee9ade
 
 
 
 
f7ea072
038645c
f7ea072
 
 
 
038645c
bb850d5
 
f7ea072
bb850d5
1ee9ade
 
 
 
 
bb850d5
79513d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7ea072
1ee9ade
 
344c4fa
f7ea072
1ee9ade
 
f7ea072
1ee9ade
 
 
 
f7ea072
1ee9ade
 
f7ea072
1ee9ade
 
 
 
 
f7ea072
 
 
 
 
79513d7
3a0b0c9
f7ea072
 
79513d7
f7ea072
79513d7
 
bb850d5
f7ea072
9db221b
 
bb850d5
f7ea072
 
 
 
 
 
 
 
 
79513d7
f7ea072
79513d7
 
 
f7ea072
9db221b
 
79513d7
 
1ee9ade
3a0b0c9
 
 
9db221b
3a0b0c9
 
9db221b
3a0b0c9
6518c39
65070b3
 
 
e6419e2
65070b3
 
 
6518c39
f7ea072
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
import whisper
from pytube import YouTube
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration

class GradioInference():
    def __init__(self):
        self.sizes = list(whisper._MODELS.keys())
        self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values()))
        self.current_size = "base"
        self.loaded_model = whisper.load_model(self.current_size)
        self.yt = None
        self.summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
        
        # Initialize VoiceLabT5 model and tokenizer
        self.keyword_model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords")
        self.keyword_tokenizer = T5Tokenizer.from_pretrained("Voicelab/vlt5-base-keywords")

        # Sentiment Classifier
        self.classifier = pipeline("text-classification")

    def __call__(self, link, lang, size):
        if self.yt is None:
            self.yt = YouTube(link)
        path = self.yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4")

        if lang == "none":
            lang = None

        if size != self.current_size:
            self.loaded_model = whisper.load_model(size)
            self.current_size = size
        
        results = self.loaded_model.transcribe(path, language=lang)

        # Perform summarization on the transcription
        transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False)

        # Extract keywords using VoiceLabT5
        task_prefix = "Keywords: "
        input_sequence = task_prefix + results["text"]
        input_ids = self.keyword_tokenizer(input_sequence, return_tensors="pt", truncation=False).input_ids
        output = self.keyword_model.generate(input_ids, no_repeat_ngram_size=3, num_beams=4)
        predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
        keywords = [x.strip() for x in predicted.split(',') if x.strip()]

        label = self.classifier(results["text"])[0]["label"]
        
        return results["text"], transcription_summary[0]["summary_text"], keywords, label

    def populate_metadata(self, link):
        self.yt = YouTube(link)
        return self.yt.thumbnail_url, self.yt.title


    def from_audio_input(self, lang, size, audio_file):
        if lang == "none":
            lang = None
        
        if size != self.current_size:
            self.loaded_model = whisper.load_model(size)
            self.current_size = size

        results = self.loaded_model.transcribe(audio_file, language=lang)

        # Perform summarization on the transcription
        transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False)

        # Extract keywords using VoiceLabT5
        task_prefix = "Keywords: "
        input_sequence = task_prefix + results["text"]
        input_ids = self.keyword_tokenizer(input_sequence, return_tensors="pt", truncation=False).input_ids
        output = self.keyword_model.generate(input_ids, no_repeat_ngram_size=3, num_beams=4)
        predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
        keywords = [x.strip() for x in predicted.split(',') if x.strip()]

        label = self.classifier(results["text"])[0]["label"]
        
        return results["text"], transcription_summary[0]["summary_text"], keywords, label


gio = GradioInference()
title = "Youtube Insights"
description = "Your AI-powered video analytics tool"

block = gr.Blocks()
with block as demo:
    gr.HTML(
        """
        <div style="text-align: center; max-width: 500px; margin: 0 auto;">
          <div>
            <h1>Youtube <span style="color: red;">Insights</span> 📹</h1>
          </div>
          <p style="margin-bottom: 10px; font-size: 94%">
            Your AI-powered video analytics tool
          </p>
        </div>
        """
    )
    with gr.Group():
        with gr.Tab("From YouTube"):
            with gr.Box():
                with gr.Row().style(equal_height=True):
                    size = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base')
                    lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none")
                link = gr.Textbox(label="YouTube Link", placeholder="Enter YouTube link...")
                title = gr.Label(label="Video Title")
                with gr.Row().style(equal_height=True):
                    img = gr.Image(label="Thumbnail")
                    text = gr.Textbox(label="Transcription", placeholder="Transcription Output...", lines=10).style(show_copy_button=True, container=True)
                with gr.Row().style(equal_height=True):
                    summary = gr.Textbox(label="Summary", placeholder="Summary Output...", lines=5).style(show_copy_button=True, container=True)
                    keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output...", lines=5).style(show_copy_button=True, container=True)
                    label = gr.Label(label="Sentiment Analysis")
                with gr.Row().style(equal_height=True):
                    clear = gr.ClearButton([link, title, img, text, summary, keywords, label], scale=1)
                    btn = gr.Button("Get video insights", variant='primary', scale=1)
                btn.click(gio, inputs=[link, lang, size], outputs=[text, summary, keywords, label])
                link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])

        with gr.Tab("From Audio file"):
            with gr.Box():
                with gr.Row().style(equal_height=True):
                    size = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base')
                    lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none")
                audio_file = gr.Audio(type="filepath")
                with gr.Row().style(equal_height=True):
                    text = gr.Textbox(label="Transcription", placeholder="Transcription Output...", lines=10).style(show_copy_button=True, container=False)
                # with gr.Row().style(equal_height=True):
                    summary = gr.Textbox(label="Summary", placeholder="Summary Output", lines=5)
                    keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output", lines=5)
                    label = gr.Label(label="Sentiment Analysis")
                with gr.Row().style(equal_height=True):
                    clear = gr.ClearButton([text], scale=1)
                    btn = gr.Button("Get video insights", variant='primary', scale=1)  # Updated button label
                btn.click(gio.from_audio_input, inputs=[lang, size, audio_file], outputs=[text, summary, keywords, label])
                

with block:
    gr.Markdown("About the app:")
    
    with gr.Accordion("What is YouTube Insights?", open=False):
            gr.Markdown("YouTube Insights is a tool developed with academic purposes only, that creates summaries, keywords and sentiments analysis based on YouTube videos or user audio files.")
    
    with gr.Accordion("How does it work?", open=False):
            gr.Markdown("Works by using OpenAI's Whisper, DistilBART for summarization and VoiceLabT5 for Keyword Extraction.")

    gr.HTML("""
        <div style="text-align: center; max-width: 500px; margin: 0 auto;">
          <p style="margin-bottom: 10px; font-size: 96%">
            2023 Master in Big Data & Data Science - Universidad Complutense de Madrid
          </p>
        </div>
        """)

demo.launch()