Spaces:
Runtime error
Runtime error
storresbusquets
commited on
Commit
·
f7ea072
1
Parent(s):
038645c
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
from pytube import YouTube
|
4 |
-
import yake
|
5 |
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration
|
6 |
|
7 |
class GradioInference():
|
@@ -11,13 +10,12 @@ class GradioInference():
|
|
11 |
self.current_size = "base"
|
12 |
self.loaded_model = whisper.load_model(self.current_size)
|
13 |
self.yt = None
|
14 |
-
|
15 |
-
# Initialize Facebook/BART-Large-CNN summarizer
|
16 |
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
17 |
-
|
|
|
18 |
self.keyword_model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords")
|
19 |
-
self.
|
20 |
-
|
21 |
def __call__(self, link, lang, size):
|
22 |
if self.yt is None:
|
23 |
self.yt = YouTube(link)
|
@@ -34,57 +32,78 @@ class GradioInference():
|
|
34 |
# Perform summarization on the transcription
|
35 |
transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False)
|
36 |
|
|
|
37 |
task_prefix = "Keywords: "
|
38 |
-
|
39 |
-
|
40 |
-
input_ids =
|
41 |
-
|
42 |
-
).input_ids
|
43 |
-
output = keyword_model.generate(input_ids, no_repeat_ngram_size=3, num_beams=4)
|
44 |
-
predicted = tokenizer.decode(output[0], skip_special_tokens=True)
|
45 |
keywords = [x.strip() for x in predicted.split(',') if x.strip()]
|
46 |
-
|
47 |
return results["text"], transcription_summary[0]["summary_text"], keywords
|
48 |
|
49 |
def populate_metadata(self, link):
|
50 |
self.yt = YouTube(link)
|
51 |
return self.yt.thumbnail_url, self.yt.title
|
52 |
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
gio = GradioInference()
|
55 |
title = "Youtube Insights"
|
56 |
-
description = "Your AI-powered
|
57 |
|
58 |
block = gr.Blocks()
|
59 |
-
with block:
|
60 |
gr.HTML(
|
61 |
"""
|
62 |
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
|
63 |
<div>
|
64 |
-
<h1>Youtube Insights</h1>
|
65 |
</div>
|
66 |
<p style="margin-bottom: 10px; font-size: 94%">
|
67 |
-
Your AI-powered
|
68 |
</p>
|
69 |
</div>
|
70 |
"""
|
71 |
)
|
72 |
with gr.Group():
|
73 |
-
with gr.
|
74 |
-
with gr.
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
from pytube import YouTube
|
|
|
4 |
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration
|
5 |
|
6 |
class GradioInference():
|
|
|
10 |
self.current_size = "base"
|
11 |
self.loaded_model = whisper.load_model(self.current_size)
|
12 |
self.yt = None
|
|
|
|
|
13 |
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
14 |
+
|
15 |
+
# Initialize VoiceLabT5 model and tokenizer
|
16 |
self.keyword_model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords")
|
17 |
+
self.keyword_tokenizer = T5Tokenizer.from_pretrained("Voicelab/vlt5-base-keywords")
|
18 |
+
|
19 |
def __call__(self, link, lang, size):
|
20 |
if self.yt is None:
|
21 |
self.yt = YouTube(link)
|
|
|
32 |
# Perform summarization on the transcription
|
33 |
transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False)
|
34 |
|
35 |
+
# Extract keywords using VoiceLabT5
|
36 |
task_prefix = "Keywords: "
|
37 |
+
input_sequence = task_prefix + results["text"]
|
38 |
+
input_ids = self.keyword_tokenizer(input_sequence, return_tensors="pt", truncation=False).input_ids
|
39 |
+
output = self.keyword_model.generate(input_ids, no_repeat_ngram_size=3, num_beams=4)
|
40 |
+
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
|
|
|
41 |
keywords = [x.strip() for x in predicted.split(',') if x.strip()]
|
42 |
+
|
43 |
return results["text"], transcription_summary[0]["summary_text"], keywords
|
44 |
|
45 |
def populate_metadata(self, link):
|
46 |
self.yt = YouTube(link)
|
47 |
return self.yt.thumbnail_url, self.yt.title
|
48 |
|
49 |
+
def transcribe_audio(audio_file):
|
50 |
+
model = whisper.load_model("base")
|
51 |
+
result = model.transcribe(audio_file)
|
52 |
+
return result["text"]
|
53 |
+
|
54 |
|
55 |
gio = GradioInference()
|
56 |
title = "Youtube Insights"
|
57 |
+
description = "Your AI-powered video analytics tool"
|
58 |
|
59 |
block = gr.Blocks()
|
60 |
+
with block as demo:
|
61 |
gr.HTML(
|
62 |
"""
|
63 |
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
|
64 |
<div>
|
65 |
+
<h1>Youtube <span style="color: red;">Insights</span> 📹</h1>
|
66 |
</div>
|
67 |
<p style="margin-bottom: 10px; font-size: 94%">
|
68 |
+
Your AI-powered video analytics tool
|
69 |
</p>
|
70 |
</div>
|
71 |
"""
|
72 |
)
|
73 |
with gr.Group():
|
74 |
+
with gr.Tab("From YouTube"):
|
75 |
+
with gr.Box():
|
76 |
+
with gr.Row().style(equal_height=True):
|
77 |
+
size = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base')
|
78 |
+
lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none")
|
79 |
+
link = gr.Textbox(label="YouTube Link")
|
80 |
+
title = gr.Label(label="Video Title")
|
81 |
+
with gr.Row().style(equal_height=True):
|
82 |
+
img = gr.Image(label="Thumbnail")
|
83 |
+
text = gr.Textbox(label="Transcription", placeholder="Transcription Output", lines=10)
|
84 |
+
with gr.Row().style(equal_height=True):
|
85 |
+
summary = gr.Textbox(label="Summary", placeholder="Summary Output", lines=5)
|
86 |
+
keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output", lines=5)
|
87 |
+
with gr.Row().style(equal_height=True):
|
88 |
+
btn = gr.Button("Get video insights") # Updated button label
|
89 |
+
btn.click(gio, inputs=[link, lang, size], outputs=[text, summary, keywords])
|
90 |
+
link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])
|
91 |
+
|
92 |
+
with gr.Tab("From Audio file"):
|
93 |
+
with gr.Box():
|
94 |
+
with gr.Row().style(equal_height=True):
|
95 |
+
size = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base')
|
96 |
+
lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none")
|
97 |
+
audio_file = gr.Audio(type="filepath")
|
98 |
+
with gr.Row().style(equal_height=True):
|
99 |
+
# img = gr.Image(label="Thumbnail")
|
100 |
+
text = gr.Textbox(label="Transcription", placeholder="Transcription Output", lines=10)
|
101 |
+
# with gr.Row().style(equal_height=True):
|
102 |
+
# summary = gr.Textbox(label="Summary", placeholder="Summary Output", lines=5)
|
103 |
+
# keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output", lines=5)
|
104 |
+
with gr.Row().style(equal_height=True):
|
105 |
+
btn = gr.Button("Get video insights") # Updated button label
|
106 |
+
btn.click(transcribe_audio, inputs=[audio_file], outputs=[text])
|
107 |
+
# link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])
|
108 |
|
109 |
+
demo.launch()
|