musepose / pose_align.py
svjack's picture
Upload 3 files
c992a5e verified
import numpy as np
import torch
import copy
import cv2
import os
import moviepy.video.io.ImageSequenceClip
from datetime import datetime
import gc
import gradio as gr
from pose.script.dwpose import DWposeDetector, draw_pose
from pose.script.util import size_calculate, warpAffine_kps
from downloading_weights import download_models
# ZeroGPU
#import spaces
'''
Detect dwpose from img, then align it by scale parameters
img: frame from the pose video
detector: DWpose
scales: scale parameters
'''
class PoseAlignmentInference:
def __init__(self,
model_dir,
output_dir):
self.detector = None
self.model_paths = {
"det_ckpt": os.path.join(model_dir, "dwpose", "yolox_l_8x8_300e_coco.pth"),
"pose_ckpt": os.path.join(model_dir, "dwpose", "dw-ll_ucoco_384.pth")
}
self.config_paths = {
"pose_config": os.path.join("pose", "config", "dwpose-l_384x288.py"),
"det_config": os.path.join("pose", "config", "yolox_l_8xb8-300e_coco.py"),
}
self.model_dir = model_dir
self.output_dir = os.path.join(output_dir, "pose_alignment")
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
#@spaces.GPU(duration=120)
def align_pose(
self,
vidfn: str,
imgfn_refer: str,
detect_resolution: int,
image_resolution: int,
align_frame: int,
max_frame: int,
gradio_progress=gr.Progress()
):
download_models(model_dir=self.model_dir)
output_filename = "pose_temp"
outfn=os.path.abspath(os.path.join(self.output_dir, f'{output_filename}_demo.mp4'))
outfn_align_pose_video=os.path.abspath(os.path.join(self.output_dir, f'{output_filename}.mp4'))
video = cv2.VideoCapture(vidfn)
width= video.get(cv2.CAP_PROP_FRAME_WIDTH)
height= video.get(cv2.CAP_PROP_FRAME_HEIGHT)
total_frame= video.get(cv2.CAP_PROP_FRAME_COUNT)
fps= video.get(cv2.CAP_PROP_FPS)
print("height:", height)
print("width:", width)
print("fps:", fps)
H_in, W_in = height, width
H_out, W_out = size_calculate(H_in,W_in, detect_resolution)
H_out, W_out = size_calculate(H_out,W_out, image_resolution)
self.init_model()
refer_img = cv2.imread(imgfn_refer)
output_refer, pose_refer = self.detector(refer_img,detect_resolution=detect_resolution, image_resolution=image_resolution, output_type='cv2',return_pose_dict=True)
body_ref_img = pose_refer['bodies']['candidate']
hands_ref_img = pose_refer['hands']
faces_ref_img = pose_refer['faces']
output_refer = cv2.cvtColor(output_refer, cv2.COLOR_RGB2BGR)
skip_frames = align_frame
max_frame = max_frame
pose_list, video_frame_buffer, video_pose_buffer = [], [], []
cap = cv2.VideoCapture('2.mp4') # 读取视频
while cap.isOpened(): # 当视频被打开时:
ret, frame = cap.read() # 读取视频,读取到的某一帧存储到frame,若是读取成功,ret为True,反之为False
if ret: # 若是读取成功
cv2.imshow('frame', frame) # 显示读取到的这一帧画面
key = cv2.waitKey(25) # 等待一段时间,并且检测键盘输入
if key == ord('q'): # 若是键盘输入'q',则退出,释放视频
cap.release() # 释放视频
break
else:
cap.release()
cv2.destroyAllWindows() # 关闭所有窗口
for i in range(max_frame):
ret, img = video.read()
if img is None:
break
else:
if i < skip_frames:
continue
video_frame_buffer.append(img)
# estimate scale parameters by the 1st frame in the video
if i==skip_frames:
output_1st_img, pose_1st_img = self.detector(img, detect_resolution, image_resolution, output_type='cv2', return_pose_dict=True)
body_1st_img = pose_1st_img['bodies']['candidate']
hands_1st_img = pose_1st_img['hands']
faces_1st_img = pose_1st_img['faces']
'''
计算逻辑:
1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。
2. 用点在图中的实际坐标来计算。
3. 实际计算中,把h的坐标归一化到 [0, 1], w为[0, W/H]
4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H
注意:dwpose 输出是 (w, h)
'''
# h不变,w缩放到原比例
ref_H, ref_W = refer_img.shape[0], refer_img.shape[1]
ref_ratio = ref_W / ref_H
body_ref_img[:, 0] = body_ref_img[:, 0] * ref_ratio
hands_ref_img[:, :, 0] = hands_ref_img[:, :, 0] * ref_ratio
faces_ref_img[:, :, 0] = faces_ref_img[:, :, 0] * ref_ratio
video_ratio = width / height
body_1st_img[:, 0] = body_1st_img[:, 0] * video_ratio
hands_1st_img[:, :, 0] = hands_1st_img[:, :, 0] * video_ratio
faces_1st_img[:, :, 0] = faces_1st_img[:, :, 0] * video_ratio
# scale
align_args = dict()
dist_1st_img = np.linalg.norm(body_1st_img[0]-body_1st_img[1]) # 0.078
dist_ref_img = np.linalg.norm(body_ref_img[0]-body_ref_img[1]) # 0.106
align_args["scale_neck"] = dist_ref_img / dist_1st_img # align / pose = ref / 1st
dist_1st_img = np.linalg.norm(body_1st_img[16]-body_1st_img[17])
dist_ref_img = np.linalg.norm(body_ref_img[16]-body_ref_img[17])
align_args["scale_face"] = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[5]) # 0.112
dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[5]) # 0.174
align_args["scale_shoulder"] = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[3]) # 0.895
dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[3]) # 0.134
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[5]-body_1st_img[6])
dist_ref_img = np.linalg.norm(body_ref_img[5]-body_ref_img[6])
s2 = dist_ref_img / dist_1st_img
align_args["scale_arm_upper"] = (s1+s2)/2 # 1.548
dist_1st_img = np.linalg.norm(body_1st_img[3]-body_1st_img[4])
dist_ref_img = np.linalg.norm(body_ref_img[3]-body_ref_img[4])
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[6]-body_1st_img[7])
dist_ref_img = np.linalg.norm(body_ref_img[6]-body_ref_img[7])
s2 = dist_ref_img / dist_1st_img
align_args["scale_arm_lower"] = (s1+s2)/2
# hand
dist_1st_img = np.zeros(10)
dist_ref_img = np.zeros(10)
dist_1st_img[0] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,1])
dist_1st_img[1] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,5])
dist_1st_img[2] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,9])
dist_1st_img[3] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,13])
dist_1st_img[4] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,17])
dist_1st_img[5] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,1])
dist_1st_img[6] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,5])
dist_1st_img[7] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,9])
dist_1st_img[8] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,13])
dist_1st_img[9] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,17])
dist_ref_img[0] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,1])
dist_ref_img[1] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,5])
dist_ref_img[2] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,9])
dist_ref_img[3] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,13])
dist_ref_img[4] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,17])
dist_ref_img[5] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,1])
dist_ref_img[6] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,5])
dist_ref_img[7] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,9])
dist_ref_img[8] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,13])
dist_ref_img[9] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,17])
ratio = 0
count = 0
for i in range (10):
if dist_1st_img[i] != 0:
ratio = ratio + dist_ref_img[i]/dist_1st_img[i]
count = count + 1
if count!=0:
align_args["scale_hand"] = (ratio/count+align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/3
else:
align_args["scale_hand"] = (align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/2
# body
dist_1st_img = np.linalg.norm(body_1st_img[1] - (body_1st_img[8] + body_1st_img[11])/2 )
dist_ref_img = np.linalg.norm(body_ref_img[1] - (body_ref_img[8] + body_ref_img[11])/2 )
align_args["scale_body_len"]=dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[8]-body_1st_img[9])
dist_ref_img = np.linalg.norm(body_ref_img[8]-body_ref_img[9])
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[11]-body_1st_img[12])
dist_ref_img = np.linalg.norm(body_ref_img[11]-body_ref_img[12])
s2 = dist_ref_img / dist_1st_img
align_args["scale_leg_upper"] = (s1+s2)/2
dist_1st_img = np.linalg.norm(body_1st_img[9]-body_1st_img[10])
dist_ref_img = np.linalg.norm(body_ref_img[9]-body_ref_img[10])
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[12]-body_1st_img[13])
dist_ref_img = np.linalg.norm(body_ref_img[12]-body_ref_img[13])
s2 = dist_ref_img / dist_1st_img
align_args["scale_leg_lower"] = (s1+s2)/2
####################
####################
# need adjust nan
for k,v in align_args.items():
if np.isnan(v):
align_args[k]=1
# centre offset (the offset of key point 1)
offset = body_ref_img[1] - body_1st_img[1]
# pose align
pose_img, pose_ori = self.detector(img, detect_resolution, image_resolution, output_type='cv2', return_pose_dict=True)
video_pose_buffer.append(pose_img)
pose_align = self.align_img(img, pose_ori, align_args, detect_resolution, image_resolution)
# add centre offset
pose = pose_align
pose['bodies']['candidate'] = pose['bodies']['candidate'] + offset
pose['hands'] = pose['hands'] + offset
pose['faces'] = pose['faces'] + offset
# h不变,w从绝对坐标缩放回0-1 注意这里要回到ref的坐标系
pose['bodies']['candidate'][:, 0] = pose['bodies']['candidate'][:, 0] / ref_ratio
pose['hands'][:, :, 0] = pose['hands'][:, :, 0] / ref_ratio
pose['faces'][:, :, 0] = pose['faces'][:, :, 0] / ref_ratio
pose_list.append(pose)
# stack
body_list = [pose['bodies']['candidate'][:18] for pose in pose_list]
body_list_subset = [pose['bodies']['subset'][:1] for pose in pose_list]
hands_list = [pose['hands'][:2] for pose in pose_list]
faces_list = [pose['faces'][:1] for pose in pose_list]
body_seq = np.stack(body_list , axis=0)
body_seq_subset = np.stack(body_list_subset, axis=0)
hands_seq = np.stack(hands_list , axis=0)
faces_seq = np.stack(faces_list , axis=0)
# concatenate and paint results
H = 768 # paint height
W1 = int((H/ref_H * ref_W)//2 *2)
W2 = int((H/height * width)//2 *2)
result_demo = [] # = Writer(args, None, H, 3*W1+2*W2, outfn, fps)
result_pose_only = [] # Writer(args, None, H, W1, args.outfn_align_pose_video, fps)
for i in range(len(body_seq)):
gradio_progress(i/len(body_seq), "Aligning Pose.... After this, go to Step 2.")
pose_t={}
pose_t["bodies"]={}
pose_t["bodies"]["candidate"]=body_seq[i]
pose_t["bodies"]["subset"]=body_seq_subset[i]
pose_t["hands"]=hands_seq[i]
pose_t["faces"]=faces_seq[i]
ref_img = cv2.cvtColor(refer_img, cv2.COLOR_RGB2BGR)
ref_img = cv2.resize(ref_img, (W1, H))
ref_pose= cv2.resize(output_refer, (W1, H))
output_transformed = draw_pose(
pose_t,
int(H_in*1024/W_in),
1024,
draw_face=False,
)
output_transformed = cv2.cvtColor(output_transformed, cv2.COLOR_BGR2RGB)
output_transformed = cv2.resize(output_transformed, (W1, H))
video_frame = cv2.resize(video_frame_buffer[i], (W2, H))
video_pose = cv2.resize(video_pose_buffer[i], (W2, H))
res = np.concatenate([ref_img, ref_pose, output_transformed, video_frame, video_pose], axis=1)
result_demo.append(res)
result_pose_only.append(output_transformed)
print(f"pose_list len: {len(pose_list)}")
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_demo, fps=fps)
clip.write_videofile(outfn, fps=fps)
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_pose_only, fps=fps)
clip.write_videofile(outfn_align_pose_video, fps=fps)
print('pose align done')
return outfn_align_pose_video, outfn
#@spaces.GPU(duration=120)
def init_model(self):
if self.detector is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.detector = DWposeDetector(
det_config=self.config_paths["det_config"],
det_ckpt=self.model_paths["det_ckpt"],
pose_config=self.config_paths["pose_config"],
pose_ckpt=self.model_paths["pose_ckpt"],
keypoints_only=False
).to(device)
def release_vram(self):
if self.detector is not None:
del self.detector
self.detector = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
@staticmethod
def align_img(img, pose_ori, scales, detect_resolution, image_resolution):
body_pose = copy.deepcopy(pose_ori['bodies']['candidate'])
hands = copy.deepcopy(pose_ori['hands'])
faces = copy.deepcopy(pose_ori['faces'])
'''
计算逻辑:
0. 该函数内进行绝对变换,始终保持人体中心点 body_pose[1] 不变
1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。
2. 用点在图中的实际坐标来计算。
3. 实际计算中,把h的坐标归一化到 [0, 1], w为[0, W/H]
4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H
注意:dwpose 输出是 (w, h)
'''
# h不变,w缩放到原比例
H_in, W_in, C_in = img.shape
video_ratio = W_in / H_in
body_pose[:, 0] = body_pose[:, 0] * video_ratio
hands[:, :, 0] = hands[:, :, 0] * video_ratio
faces[:, :, 0] = faces[:, :, 0] * video_ratio
# scales of 10 body parts
scale_neck = scales["scale_neck"]
scale_face = scales["scale_face"]
scale_shoulder = scales["scale_shoulder"]
scale_arm_upper = scales["scale_arm_upper"]
scale_arm_lower = scales["scale_arm_lower"]
scale_hand = scales["scale_hand"]
scale_body_len = scales["scale_body_len"]
scale_leg_upper = scales["scale_leg_upper"]
scale_leg_lower = scales["scale_leg_lower"]
scale_sum = 0
count = 0
scale_list = [scale_neck, scale_face, scale_shoulder, scale_arm_upper, scale_arm_lower, scale_hand,
scale_body_len, scale_leg_upper, scale_leg_lower]
for i in range(len(scale_list)):
if not np.isinf(scale_list[i]):
scale_sum = scale_sum + scale_list[i]
count = count + 1
for i in range(len(scale_list)):
if np.isinf(scale_list[i]):
scale_list[i] = scale_sum / count
# offsets of each part
offset = dict()
offset["14_15_16_17_to_0"] = body_pose[[14, 15, 16, 17], :] - body_pose[[0], :]
offset["3_to_2"] = body_pose[[3], :] - body_pose[[2], :]
offset["4_to_3"] = body_pose[[4], :] - body_pose[[3], :]
offset["6_to_5"] = body_pose[[6], :] - body_pose[[5], :]
offset["7_to_6"] = body_pose[[7], :] - body_pose[[6], :]
offset["9_to_8"] = body_pose[[9], :] - body_pose[[8], :]
offset["10_to_9"] = body_pose[[10], :] - body_pose[[9], :]
offset["12_to_11"] = body_pose[[12], :] - body_pose[[11], :]
offset["13_to_12"] = body_pose[[13], :] - body_pose[[12], :]
offset["hand_left_to_4"] = hands[1, :, :] - body_pose[[4], :]
offset["hand_right_to_7"] = hands[0, :, :] - body_pose[[7], :]
# neck
c_ = body_pose[1]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_neck)
neck = body_pose[[0], :]
neck = warpAffine_kps(neck, M)
body_pose[[0], :] = neck
# body_pose_up_shoulder
c_ = body_pose[0]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_face)
body_pose_up_shoulder = offset["14_15_16_17_to_0"] + body_pose[[0], :]
body_pose_up_shoulder = warpAffine_kps(body_pose_up_shoulder, M)
body_pose[[14, 15, 16, 17], :] = body_pose_up_shoulder
# shoulder
c_ = body_pose[1]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_shoulder)
body_pose_shoulder = body_pose[[2, 5], :]
body_pose_shoulder = warpAffine_kps(body_pose_shoulder, M)
body_pose[[2, 5], :] = body_pose_shoulder
# arm upper left
c_ = body_pose[2]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_upper)
elbow = offset["3_to_2"] + body_pose[[2], :]
elbow = warpAffine_kps(elbow, M)
body_pose[[3], :] = elbow
# arm lower left
c_ = body_pose[3]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_lower)
wrist = offset["4_to_3"] + body_pose[[3], :]
wrist = warpAffine_kps(wrist, M)
body_pose[[4], :] = wrist
# hand left
c_ = body_pose[4]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_hand)
hand = offset["hand_left_to_4"] + body_pose[[4], :]
hand = warpAffine_kps(hand, M)
hands[1, :, :] = hand
# arm upper right
c_ = body_pose[5]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_upper)
elbow = offset["6_to_5"] + body_pose[[5], :]
elbow = warpAffine_kps(elbow, M)
body_pose[[6], :] = elbow
# arm lower right
c_ = body_pose[6]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_lower)
wrist = offset["7_to_6"] + body_pose[[6], :]
wrist = warpAffine_kps(wrist, M)
body_pose[[7], :] = wrist
# hand right
c_ = body_pose[7]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_hand)
hand = offset["hand_right_to_7"] + body_pose[[7], :]
hand = warpAffine_kps(hand, M)
hands[0, :, :] = hand
# body len
c_ = body_pose[1]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_body_len)
body_len = body_pose[[8, 11], :]
body_len = warpAffine_kps(body_len, M)
body_pose[[8, 11], :] = body_len
# leg upper left
c_ = body_pose[8]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_upper)
knee = offset["9_to_8"] + body_pose[[8], :]
knee = warpAffine_kps(knee, M)
body_pose[[9], :] = knee
# leg lower left
c_ = body_pose[9]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_lower)
ankle = offset["10_to_9"] + body_pose[[9], :]
ankle = warpAffine_kps(ankle, M)
body_pose[[10], :] = ankle
# leg upper right
c_ = body_pose[11]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_upper)
knee = offset["12_to_11"] + body_pose[[11], :]
knee = warpAffine_kps(knee, M)
body_pose[[12], :] = knee
# leg lower right
c_ = body_pose[12]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_lower)
ankle = offset["13_to_12"] + body_pose[[12], :]
ankle = warpAffine_kps(ankle, M)
body_pose[[13], :] = ankle
# none part
body_pose_none = pose_ori['bodies']['candidate'] == -1.
hands_none = pose_ori['hands'] == -1.
faces_none = pose_ori['faces'] == -1.
body_pose[body_pose_none] = -1.
hands[hands_none] = -1.
nan = float('nan')
if len(hands[np.isnan(hands)]) > 0:
print('nan')
faces[faces_none] = -1.
# last check nan -> -1.
body_pose = np.nan_to_num(body_pose, nan=-1.)
hands = np.nan_to_num(hands, nan=-1.)
faces = np.nan_to_num(faces, nan=-1.)
# return
pose_align = copy.deepcopy(pose_ori)
pose_align['bodies']['candidate'] = body_pose
pose_align['hands'] = hands
pose_align['faces'] = faces
return pose_align