File size: 6,494 Bytes
ce2be79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
804b339
 
 
 
 
 
 
ce2be79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
804b339
 
ce2be79
 
804b339
ce2be79
 
 
 
 
 
 
 
 
 
804b339
ce2be79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
804b339
 
 
 
 
 
 
ce2be79
 
 
 
 
 
804b339
 
 
ce2be79
804b339
ce2be79
804b339
ce2be79
 
 
 
804b339
ce2be79
 
 
 
 
 
 
 
804b339
ce2be79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
804b339
 
 
 
 
 
9bdbeee
 
 
804b339
 
9bdbeee
804b339
 
9bdbeee
804b339
 
9bdbeee
804b339
9bdbeee
 
 
804b339
 
 
9bdbeee
804b339
 
9bdbeee
 
 
804b339
9bdbeee
804b339
ce2be79
 
804b339
 
ce2be79
 
 
804b339
 
 
 
ce2be79
 
 
 
804b339
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from langchain.docstore.document import Document
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.memory.simple import SimpleMemory

from langchain.chains import ConversationChain, LLMChain, SequentialChain
from langchain.memory import ConversationBufferMemory

from langchain.prompts import ChatPromptTemplate, PromptTemplate
from langchain.document_loaders import UnstructuredFileLoader

from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.memory import ConversationSummaryMemory

from langchain.callbacks import PromptLayerCallbackHandler
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

from langchain.schema import AIMessage, HumanMessage, SystemMessage
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.base import BaseCallbackHandler
import gradio as gr

from threading import Thread
from queue import Queue, Empty
from threading import Thread
from collections.abc import Generator
from langchain.llms import OpenAI
from langchain.callbacks.base import BaseCallbackHandler

import itertools
import time
import os
import getpass
import json
import sys
from typing import Any, Dict, List, Union

import promptlayer
import openai
import gradio as gr

from pydantic import BaseModel, Field, validator

#Load the FAISS Model ( vector )
openai.api_key = os.environ["OPENAI_API_KEY"]
db = FAISS.load_local("db", OpenAIEmbeddings())

#API Keys 
promptlayer.api_key = os.environ["PROMPTLAYER"]

from langchain.callbacks import PromptLayerCallbackHandler
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.memory import ConversationSummaryMemory

# Defined a QueueCallback, which takes as a Queue object during initialization. Each new token is pushed to the queue.
class QueueCallback(BaseCallbackHandler):
    """Callback handler for streaming LLM responses to a queue."""

    def __init__(self, q):
        self.q = q

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        self.q.put(token)

    def on_llm_end(self, *args, **kwargs: Any) -> None:
        return self.q.empty()

class DDSAgent:

  def __init__(self, name, db, prompt_template='', model_name='gpt-4', verbose=False, temp=0.2):
    self.db = db
    self.verbose = verbose
    self.llm = ChatOpenAI(
      model_name="gpt-4",
      temperature=temp
      )

    #The zero shot prompt provided at creation
    self.prompt_template = prompt_template

    #The LLM used for conversation summarization
    self.summary_llm = ChatOpenAI(
        model_name=model_name,
        max_tokens=25,
        callbacks=[PromptLayerCallbackHandler(pl_tags=["froebel"])],
        streaming=False,
        )

    #Reviews convesation history and summarizes it to keep the token count down.
    self.memory = ConversationSummaryMemory(llm=self.summary_llm,
                                            max_token_limit=200,
                                            memory_key="memory",
                                            input_key="input")

  def chain(self, prompt: PromptTemplate, llm: ChatOpenAI) -> LLMChain:
        return LLMChain(
            llm=llm,
            prompt=prompt,
            verbose=self.verbose,
            memory=self.memory
        )

  def lookup(self, input, num_docs=5):
    docs = self.db.similarity_search(input, k=num_docs)
    docs_to_string = ""
    for doc in docs:
      docs_to_string += str(doc.page_content)
    return docs_to_string

  def stream(self, input) -> Generator:

  # Create a Queue
    q = Queue()
    job_done = object()

    #RAG
    docs = self.lookup(input,5)

    llm = ChatOpenAI(
        model_name='gpt-4',
        callbacks=[QueueCallback(q),
                  PromptLayerCallbackHandler(pl_tags=["froebel"])],
        streaming=True,
        )

    prompt = PromptTemplate(
          input_variables=['input','docs','history'],
          template=self.prompt_template
          # partial_variables={"format_instructions": self.parser.get_format_instructions()}
        )

    # Create a funciton to call - this will run in a thread
    def task():
        resp = self.chain(prompt,llm).run(
            {'input':input,
             'docs':docs,
             'history':self.memory})
        q.put(job_done)

    # Create a thread and start the function
    t = Thread(target=task)
    t.start()

    content = ""

    # Get each new token from the queue and yield for our generator
    while True:
        try:
            next_token = q.get(True, timeout=1)
            if next_token is job_done:
                break
            content += next_token
            yield next_token, content
        except Empty:
            continue




agent_prompt = """
            Roleplay
            You are a UBD ( Understanding by Design ) coach.
            Educators come to you to develop UBD based learning experiences
            and curriculum.

            This is the conversation up until now:
            {history}

            The teacher says:
            {input}

            As a result, following standards were matched:
            {docs}

            Respond to the teacher message.

            You have three objectives:

            a) to help them through the design process
            b) to help simplify the process for the educator
            c) to help build confidence and understand in the ubd process

            Take it step by step and keep.
            Keep focused on the current task at hand.
            Close with a single guiding step in the form of a question.
            Be encouraging.

            Do not start with "AI:" or any self identifying text.

        """

def ask_agent(input, history):
    dds = DDSAgent('agent', db, prompt_template=agent_prompt)
    for next_token, content in dds.stream(input):
        yield(content)

gr.ChatInterface(ask_agent,
                 title="UBD Coach",
                  description="""
                  Using the Understanding By Design framework? I can help. (/◕ヮ◕)/
                  """,
                  theme="monochrome",
                  retry_btn=None,
                  undo_btn=None,
                  clear_btn=None
                 ).queue().launch(debug=True)