Errolmking's picture
Create app.py
ce2be79
raw
history blame
6.52 kB
from langchain.docstore.document import Document
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.memory.simple import SimpleMemory
from langchain.chains import ConversationChain, LLMChain, SequentialChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, PromptTemplate
from langchain.document_loaders import UnstructuredFileLoader
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.memory import ConversationSummaryMemory
from langchain.callbacks import PromptLayerCallbackHandler
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import AIMessage, HumanMessage, SystemMessage
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.base import BaseCallbackHandler
import gradio as gr
from threading import Thread
from queue import Queue, Empty
from threading import Thread
from collections.abc import Generator
from langchain.llms import OpenAI
from langchain.callbacks.base import BaseCallbackHandler
import itertools
import time
import os
import getpass
import json
import sys
from typing import Any, Dict, List, Union
import promptlayer
import openai
import gradio as gr
from pydantic import BaseModel, Field, validator
#Load the FAISS Model ( vector )
openai.api_key = os.environ["OPENAI_API_KEY"]
db = FAISS.load_local("db", OpenAIEmbeddings())
#API Keys
promptlayer.api_key = os.environ["PROMPTLAYER"]
from langchain.callbacks import PromptLayerCallbackHandler
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.memory import ConversationSummaryMemory
# Defined a QueueCallback, which takes as a Queue object during initialization. Each new token is pushed to the queue.
class QueueCallback(BaseCallbackHandler):
"""Callback handler for streaming LLM responses to a queue."""
def __init__(self, q):
self.q = q
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
self.q.put(token)
def on_llm_end(self, *args, **kwargs: Any) -> None:
return self.q.empty()
class DDSAgent:
def __init__(self, name, db, prompt_template='', model_name='gpt-4', verbose=False, temp=0.2):
self.db = db
self.verbose = verbose
self.llm = ChatOpenAI(
model_name="gpt-4",
temperature=temp
)
#The zero shot prompt provided at creation
self.prompt_template = prompt_template
#The LLM used for conversation summarization
self.summary_llm = ChatOpenAI(
model_name=model_name,
max_tokens=25,
callbacks=[PromptLayerCallbackHandler(pl_tags=["froebel"])],
streaming=False,
)
#Reviews convesation history and summarizes it to keep the token count down.
self.memory = ConversationSummaryMemory(llm=self.summary_llm,
max_token_limit=200,
memory_key="memory",
input_key="input")
def chain(self, prompt: PromptTemplate, llm: ChatOpenAI) -> LLMChain:
return LLMChain(
llm=llm,
prompt=prompt,
verbose=self.verbose,
memory=self.memory
)
def lookup(self, input, num_docs=5):
docs = self.db.similarity_search(input, k=num_docs)
docs_to_string = ""
for doc in docs:
docs_to_string += str(doc.page_content)
return docs_to_string
def stream(self, input) -> Generator:
# Create a Queue
q = Queue()
job_done = object()
#RAG
docs = self.lookup(input,5)
llm = ChatOpenAI(
model_name='gpt-4',
callbacks=[QueueCallback(q),
PromptLayerCallbackHandler(pl_tags=["froebel"])],
streaming=True,
)
prompt = PromptTemplate(
input_variables=['input','docs','history'],
template=self.prompt_template
# partial_variables={"format_instructions": self.parser.get_format_instructions()}
)
# Create a funciton to call - this will run in a thread
def task():
resp = self.chain(prompt,llm).run(
{'input':input,
'docs':docs,
'history':self.memory})
q.put(job_done)
# Create a thread and start the function
t = Thread(target=task)
t.start()
content = ""
# Get each new token from the queue and yield for our generator
while True:
try:
next_token = q.get(True, timeout=1)
if next_token is job_done:
break
content += next_token
yield next_token, content
except Empty:
continue
agent_prompt = """
Roleplay
You are a UBD ( Understanding by Design ) coach.
Educators come to you to develop UBD based learning experiences
and curriculum.
This is the conversation up until now:
{history}
The teacher says:
{input}
As a result, following standards were matched:
{docs}
Respond to the teacher message.
You have three objectives:
a) to help them through the design process
b) to help simplify the process for the educator
c) to help build confidence and understand in the ubd process
Take it step by step and keep.
Keep focused on the current task at hand.
Close with a single guiding step in the form of a question.
Be encouraging.
Do not start with "AI:" or any self identifying text.
"""
dds = DDSAgent('agent', db, prompt_template=agent_prompt)
def ask_agent(input, history):
for next_token, content in dds.stream(input):
yield(content)
gr.ChatInterface(ask_agent,
title="UBD Coach",
description="""
Using the Understanding By Design framework? I can help. (/◕ヮ◕)/
""",
theme="monochrome",
retry_btn=None,
undo_btn=None,
clear_btn=None
).queue().launch(debug=True)