VISOR-GPT / train /finetune /run_classifier.py
szukevin's picture
upload
7900c16
raw
history blame
14.7 kB
"""
This script provides an example to wrap TencentPretrain for classification.
"""
import sys
import os
import random
import argparse
import torch
import torch.nn as nn
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.embeddings import *
from tencentpretrain.encoders import *
from tencentpretrain.utils.vocab import Vocab
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.optimizers import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.utils.seed import set_seed
from tencentpretrain.utils.logging import init_logger
from tencentpretrain.utils.misc import pooling
from tencentpretrain.model_saver import save_model
from tencentpretrain.opts import finetune_opts, tokenizer_opts, adv_opts
class Classifier(nn.Module):
def __init__(self, args):
super(Classifier, self).__init__()
self.embedding = Embedding(args)
for embedding_name in args.embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.embedding.update(tmp_emb, embedding_name)
self.encoder = str2encoder[args.encoder](args)
self.labels_num = args.labels_num
self.pooling_type = args.pooling
self.soft_targets = args.soft_targets
self.soft_alpha = args.soft_alpha
self.output_layer_1 = nn.Linear(args.hidden_size, args.hidden_size)
self.output_layer_2 = nn.Linear(args.hidden_size, self.labels_num)
def forward(self, src, tgt, seg, soft_tgt=None):
"""
Args:
src: [batch_size x seq_length]
tgt: [batch_size]
seg: [batch_size x seq_length]
"""
# Embedding.
emb = self.embedding(src, seg)
# Encoder.
output = self.encoder(emb, seg)
# Target.
output = pooling(output, seg, self.pooling_type)
output = torch.tanh(self.output_layer_1(output))
logits = self.output_layer_2(output)
if tgt is not None:
if self.soft_targets and soft_tgt is not None:
loss = self.soft_alpha * nn.MSELoss()(logits, soft_tgt) + \
(1 - self.soft_alpha) * nn.NLLLoss()(nn.LogSoftmax(dim=-1)(logits), tgt.view(-1))
else:
loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(logits), tgt.view(-1))
return loss, logits
else:
return None, logits
def count_labels_num(path):
labels_set, columns = set(), {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
columns[column_name] = i
continue
line = line.rstrip("\r\n").split("\t")
label = int(line[columns["label"]])
labels_set.add(label)
return len(labels_set)
def load_or_initialize_parameters(args, model):
if args.pretrained_model_path is not None:
# Initialize with pretrained model.
model.load_state_dict(torch.load(args.pretrained_model_path, map_location="cpu"), strict=False)
else:
# Initialize with normal distribution.
for n, p in list(model.named_parameters()):
if "gamma" not in n and "beta" not in n:
p.data.normal_(0, 0.02)
def build_optimizer(args, model):
param_optimizer = list(model.named_parameters())
no_decay = ["bias", "gamma", "beta"]
optimizer_grouped_parameters = [
{"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], "weight_decay": 0.01},
{"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
if args.optimizer in ["adamw"]:
optimizer = str2optimizer[args.optimizer](optimizer_grouped_parameters, lr=args.learning_rate, correct_bias=False)
else:
optimizer = str2optimizer[args.optimizer](optimizer_grouped_parameters, lr=args.learning_rate,
scale_parameter=False, relative_step=False)
if args.scheduler in ["constant"]:
scheduler = str2scheduler[args.scheduler](optimizer)
elif args.scheduler in ["constant_with_warmup"]:
scheduler = str2scheduler[args.scheduler](optimizer, args.train_steps*args.warmup)
else:
scheduler = str2scheduler[args.scheduler](optimizer, args.train_steps*args.warmup, args.train_steps)
return optimizer, scheduler
def batch_loader(batch_size, src, tgt, seg, soft_tgt=None):
instances_num = src.size()[0]
for i in range(instances_num // batch_size):
src_batch = src[i * batch_size : (i + 1) * batch_size, :]
tgt_batch = tgt[i * batch_size : (i + 1) * batch_size]
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
if soft_tgt is not None:
soft_tgt_batch = soft_tgt[i * batch_size : (i + 1) * batch_size, :]
yield src_batch, tgt_batch, seg_batch, soft_tgt_batch
else:
yield src_batch, tgt_batch, seg_batch, None
if instances_num > instances_num // batch_size * batch_size:
src_batch = src[instances_num // batch_size * batch_size :, :]
tgt_batch = tgt[instances_num // batch_size * batch_size :]
seg_batch = seg[instances_num // batch_size * batch_size :, :]
if soft_tgt is not None:
soft_tgt_batch = soft_tgt[instances_num // batch_size * batch_size :, :]
yield src_batch, tgt_batch, seg_batch, soft_tgt_batch
else:
yield src_batch, tgt_batch, seg_batch, None
def read_dataset(args, path):
dataset, columns = [], {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
columns[column_name] = i
continue
line = line.rstrip("\r\n").split("\t")
tgt = int(line[columns["label"]])
if args.soft_targets and "logits" in columns.keys():
soft_tgt = [float(value) for value in line[columns["logits"]].split(" ")]
if "text_b" not in columns: # Sentence classification.
text_a = line[columns["text_a"]]
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
seg = [1] * len(src)
else: # Sentence-pair classification.
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b) + [SEP_TOKEN])
src = src_a + src_b
seg = [1] * len(src_a) + [2] * len(src_b)
if len(src) > args.seq_length:
src = src[: args.seq_length]
seg = seg[: args.seq_length]
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
while len(src) < args.seq_length:
src.append(PAD_ID)
seg.append(0)
if args.soft_targets and "logits" in columns.keys():
dataset.append((src, tgt, seg, soft_tgt))
else:
dataset.append((src, tgt, seg))
return dataset
def train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch, soft_tgt_batch=None):
model.zero_grad()
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
if soft_tgt_batch is not None:
soft_tgt_batch = soft_tgt_batch.to(args.device)
loss, _ = model(src_batch, tgt_batch, seg_batch, soft_tgt_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
if args.fp16:
with args.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if args.use_adv and args.adv_type == "fgm":
args.adv_method.attack(epsilon=args.fgm_epsilon)
loss_adv, _ = model(src_batch, tgt_batch, seg_batch, soft_tgt_batch)
if torch.cuda.device_count() > 1:
loss_adv = torch.mean(loss_adv)
loss_adv.backward()
args.adv_method.restore()
if args.use_adv and args.adv_type == "pgd":
K = args.pgd_k
args.adv_method.backup_grad()
for t in range(K):
# apply the perturbation to embedding
args.adv_method.attack(epsilon=args.pgd_epsilon, alpha=args.pgd_alpha,
is_first_attack=(t == 0))
if t != K - 1:
model.zero_grad()
else:
args.adv_method.restore_grad()
loss_adv, _ = model(src_batch, tgt_batch, seg_batch, soft_tgt_batch)
if torch.cuda.device_count() > 1:
loss_adv = torch.mean(loss_adv)
loss_adv.backward()
args.adv_method.restore()
optimizer.step()
scheduler.step()
return loss
def evaluate(args, dataset):
src = torch.LongTensor([sample[0] for sample in dataset])
tgt = torch.LongTensor([sample[1] for sample in dataset])
seg = torch.LongTensor([sample[2] for sample in dataset])
batch_size = args.batch_size
correct = 0
# Confusion matrix.
confusion = torch.zeros(args.labels_num, args.labels_num, dtype=torch.long)
args.model.eval()
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
with torch.no_grad():
_, logits = args.model(src_batch, tgt_batch, seg_batch)
pred = torch.argmax(nn.Softmax(dim=1)(logits), dim=1)
gold = tgt_batch
for j in range(pred.size()[0]):
confusion[pred[j], gold[j]] += 1
correct += torch.sum(pred == gold).item()
args.logger.info("Confusion matrix:")
args.logger.info(confusion)
args.logger.info("Report precision, recall, and f1:")
eps = 1e-9
for i in range(confusion.size()[0]):
p = confusion[i, i].item() / (confusion[i, :].sum().item() + eps)
r = confusion[i, i].item() / (confusion[:, i].sum().item() + eps)
f1 = 2 * p * r / (p + r + eps)
args.logger.info("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i, p, r, f1))
args.logger.info("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct / len(dataset), correct, len(dataset)))
return correct / len(dataset), confusion
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
tokenizer_opts(parser)
parser.add_argument("--soft_targets", action='store_true',
help="Train model with logits.")
parser.add_argument("--soft_alpha", type=float, default=0.5,
help="Weight of the soft targets loss.")
adv_opts(parser)
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
# Count the number of labels.
args.labels_num = count_labels_num(args.train_path)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
set_seed(args.seed)
# Build classification model.
model = Classifier(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
# Get logger.
args.logger = init_logger(args)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path)
instances_num = len(trainset)
batch_size = args.batch_size
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
args.logger.info("Batch size: {}".format(batch_size))
args.logger.info("The number of training instances: {}".format(instances_num))
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
if args.use_adv:
args.adv_method = str2adv[args.adv_type](model)
total_loss, result, best_result = 0.0, 0.0, 0.0
args.logger.info("Start training.")
for epoch in range(1, args.epochs_num + 1):
random.shuffle(trainset)
src = torch.LongTensor([example[0] for example in trainset])
tgt = torch.LongTensor([example[1] for example in trainset])
seg = torch.LongTensor([example[2] for example in trainset])
if args.soft_targets:
soft_tgt = torch.FloatTensor([example[3] for example in trainset])
else:
soft_tgt = None
model.train()
for i, (src_batch, tgt_batch, seg_batch, soft_tgt_batch) in enumerate(batch_loader(batch_size, src, tgt, seg, soft_tgt)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch, soft_tgt_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, read_dataset(args, args.dev_path))
if result[0] > best_result:
best_result = result[0]
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
args.logger.info("Test set evaluation.")
if torch.cuda.device_count() > 1:
args.model.module.load_state_dict(torch.load(args.output_model_path))
else:
args.model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()