Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for NER. | |
""" | |
import sys | |
import os | |
import random | |
import argparse | |
import json | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.embeddings import * | |
from tencentpretrain.encoders import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.utils.optimizers import * | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils.vocab import Vocab | |
from tencentpretrain.utils.seed import set_seed | |
from tencentpretrain.utils.logging import init_logger | |
from tencentpretrain.utils.tokenizers import * | |
from tencentpretrain.model_saver import save_model | |
from tencentpretrain.opts import finetune_opts | |
from finetune.run_classifier import build_optimizer, load_or_initialize_parameters | |
class NerTagger(nn.Module): | |
def __init__(self, args): | |
super(NerTagger, self).__init__() | |
self.embedding = Embedding(args) | |
for embedding_name in args.embedding: | |
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) | |
self.embedding.update(tmp_emb, embedding_name) | |
self.encoder = str2encoder[args.encoder](args) | |
self.labels_num = args.labels_num | |
self.output_layer = nn.Linear(args.hidden_size, self.labels_num) | |
self.crf_target = args.crf_target | |
if args.crf_target: | |
from torchcrf import CRF | |
self.crf = CRF(self.labels_num, batch_first=True) | |
self.seq_length = args.seq_length | |
def forward(self, src, tgt, seg): | |
""" | |
Args: | |
src: [batch_size x seq_length] | |
tgt: [batch_size x seq_length] | |
seg: [batch_size x seq_length] | |
Returns: | |
loss: Sequence labeling loss. | |
logits: Output logits. | |
""" | |
# Embedding. | |
emb = self.embedding(src, seg) | |
# Encoder. | |
output = self.encoder(emb, seg) | |
# Target. | |
logits = self.output_layer(output) | |
if self.crf_target: | |
tgt_mask = seg.type(torch.uint8) | |
pred = self.crf.decode(logits, mask=tgt_mask) | |
for j in range(len(pred)): | |
while len(pred[j]) < self.seq_length: | |
pred[j].append(self.labels_num - 1) | |
pred = torch.tensor(pred).contiguous().view(-1) | |
if tgt is not None: | |
loss = -self.crf(F.log_softmax(logits, 2), tgt, mask=tgt_mask, reduction='mean') | |
return loss, pred | |
else: | |
return None, pred | |
else: | |
tgt_mask = seg.contiguous().view(-1).float() | |
logits = logits.contiguous().view(-1, self.labels_num) | |
pred = logits.argmax(dim=-1) | |
if tgt is not None: | |
tgt = tgt.contiguous().view(-1, 1) | |
one_hot = torch.zeros(tgt.size(0), self.labels_num). \ | |
to(torch.device(tgt.device)). \ | |
scatter_(1, tgt, 1.0) | |
numerator = -torch.sum(nn.LogSoftmax(dim=-1)(logits) * one_hot, 1) | |
numerator = torch.sum(tgt_mask * numerator) | |
denominator = torch.sum(tgt_mask) + 1e-6 | |
loss = numerator / denominator | |
return loss, pred | |
else: | |
return None, pred | |
def read_dataset(args, path): | |
dataset, columns = [], {} | |
with open(path, mode="r", encoding="utf-8") as f: | |
for line_id, line in enumerate(f): | |
if line_id == 0: | |
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): | |
columns[column_name] = i | |
continue | |
line = line.rstrip("\r\n").split("\t") | |
labels = line[columns["label"]] | |
tgt = [args.l2i[l] for l in labels.split(" ")] | |
text_a = line[columns["text_a"]] | |
src = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a)) | |
seg = [1] * len(src) | |
if len(src) > args.seq_length: | |
src = src[: args.seq_length] | |
tgt = tgt[: args.seq_length] | |
seg = seg[: args.seq_length] | |
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] | |
while len(src) < args.seq_length: | |
src.append(PAD_ID) | |
tgt.append(args.labels_num - 1) | |
seg.append(0) | |
dataset.append([src, tgt, seg]) | |
return dataset | |
def batch_loader(batch_size, src, tgt, seg): | |
instances_num = src.size()[0] | |
for i in range(instances_num // batch_size): | |
src_batch = src[i * batch_size : (i + 1) * batch_size, :] | |
tgt_batch = tgt[i * batch_size : (i + 1) * batch_size, :] | |
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :] | |
yield src_batch, tgt_batch, seg_batch | |
if instances_num > instances_num // batch_size * batch_size: | |
src_batch = src[instances_num // batch_size * batch_size :, :] | |
tgt_batch = tgt[instances_num // batch_size * batch_size :, :] | |
seg_batch = seg[instances_num // batch_size * batch_size :, :] | |
yield src_batch, tgt_batch, seg_batch | |
def train(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch): | |
model.zero_grad() | |
src_batch = src_batch.to(args.device) | |
tgt_batch = tgt_batch.to(args.device) | |
seg_batch = seg_batch.to(args.device) | |
loss, _ = model(src_batch, tgt_batch, seg_batch) | |
if torch.cuda.device_count() > 1: | |
loss = torch.mean(loss) | |
if args.fp16: | |
with amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
loss.backward() | |
optimizer.step() | |
scheduler.step() | |
return loss | |
def evaluate(args, dataset): | |
src = torch.LongTensor([sample[0] for sample in dataset]) | |
tgt = torch.LongTensor([sample[1] for sample in dataset]) | |
seg = torch.LongTensor([sample[2] for sample in dataset]) | |
instances_num = src.size(0) | |
batch_size = args.batch_size | |
correct, gold_entities_num, pred_entities_num = 0, 0, 0 | |
args.model.eval() | |
for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, src, tgt, seg)): | |
src_batch = src_batch.to(args.device) | |
tgt_batch = tgt_batch.to(args.device) | |
seg_batch = seg_batch.to(args.device) | |
loss, pred = args.model(src_batch, tgt_batch, seg_batch) | |
gold = tgt_batch.contiguous().view(-1, 1) | |
for j in range(gold.size()[0]): | |
if gold[j].item() in args.begin_ids: | |
gold_entities_num += 1 | |
for j in range(pred.size()[0]): | |
if pred[j].item() in args.begin_ids and gold[j].item() != args.l2i["[PAD]"]: | |
pred_entities_num += 1 | |
pred_entities_pos, gold_entities_pos = set(), set() | |
for j in range(gold.size()[0]): | |
if gold[j].item() in args.begin_ids: | |
start = j | |
for k in range(j + 1, gold.size()[0]): | |
if gold[k].item() == args.l2i["[PAD]"] or gold[k].item() == args.l2i["O"] or gold[k].item() in args.begin_ids: | |
end = k - 1 | |
break | |
else: | |
end = gold.size()[0] - 1 | |
gold_entities_pos.add((start, end)) | |
for j in range(pred.size()[0]): | |
if pred[j].item() in args.begin_ids and gold[j].item() != args.l2i["[PAD]"]: | |
start = j | |
for k in range(j + 1, pred.size()[0]): | |
if pred[k].item() == args.l2i["[PAD]"] or pred[k].item() == args.l2i["O"] or pred[k].item() in args.begin_ids: | |
end = k - 1 | |
break | |
else: | |
end = pred.size()[0] - 1 | |
pred_entities_pos.add((start, end)) | |
for entity in pred_entities_pos: | |
if entity not in gold_entities_pos: | |
continue | |
for j in range(entity[0], entity[1] + 1): | |
if gold[j].item() != pred[j].item(): | |
break | |
else: | |
correct += 1 | |
args.logger.info("Report precision, recall, and f1:") | |
eps = 1e-9 | |
p = correct / (pred_entities_num + eps) | |
r = correct / (gold_entities_num + eps) | |
f1 = 2 * p * r / (p + r + eps) | |
args.logger.info("{:.3f}, {:.3f}, {:.3f}".format(p, r, f1)) | |
return f1 | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
finetune_opts(parser) | |
parser.add_argument("--vocab_path", default=None, type=str, | |
help="Path of the vocabulary file.") | |
parser.add_argument("--spm_model_path", default=None, type=str, | |
help="Path of the sentence piece model.") | |
parser.add_argument("--label2id_path", type=str, required=True, | |
help="Path of the label2id file.") | |
parser.add_argument("--crf_target", action="store_true", | |
help="Use CRF loss as the target function or not, default False.") | |
args = parser.parse_args() | |
# Load the hyperparameters of the config file. | |
args = load_hyperparam(args) | |
# Get logger. | |
args.logger = init_logger(args) | |
set_seed(args.seed) | |
args.begin_ids = [] | |
with open(args.label2id_path, mode="r", encoding="utf-8") as f: | |
l2i = json.load(f) | |
args.logger.info("Labels: " + str(l2i)) | |
l2i["[PAD]"] = len(l2i) | |
for label in l2i: | |
if label.startswith("B"): | |
args.begin_ids.append(l2i[label]) | |
args.l2i = l2i | |
args.labels_num = len(l2i) | |
args.tokenizer = SpaceTokenizer(args) | |
# Build sequence labeling model. | |
model = NerTagger(args) | |
# Load or initialize parameters. | |
load_or_initialize_parameters(args, model) | |
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(args.device) | |
# Training phase. | |
instances = read_dataset(args, args.train_path) | |
instances_num = len(instances) | |
batch_size = args.batch_size | |
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1 | |
args.logger.info("Batch size: {}".format(batch_size)) | |
args.logger.info("The number of training instances: {}".format(instances_num)) | |
optimizer, scheduler = build_optimizer(args, model) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer, opt_level = args.fp16_opt_level) | |
if torch.cuda.device_count() > 1: | |
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
args.model = model | |
total_loss, f1, best_f1 = 0.0, 0.0, 0.0 | |
args.logger.info("Start training.") | |
for epoch in range(1, args.epochs_num + 1): | |
random.shuffle(instances) | |
src = torch.LongTensor([ins[0] for ins in instances]) | |
tgt = torch.LongTensor([ins[1] for ins in instances]) | |
seg = torch.LongTensor([ins[2] for ins in instances]) | |
model.train() | |
for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, src, tgt, seg)): | |
loss = train(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch) | |
total_loss += loss.item() | |
if (i + 1) % args.report_steps == 0: | |
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps)) | |
total_loss = 0.0 | |
f1 = evaluate(args, read_dataset(args, args.dev_path)) | |
if f1 > best_f1: | |
best_f1 = f1 | |
save_model(model, args.output_model_path) | |
else: | |
continue | |
# Evaluation phase. | |
if args.test_path is not None: | |
args.logger.info("Test set evaluation.") | |
if torch.cuda.device_count() > 1: | |
args.model.module.load_state_dict(torch.load(args.output_model_path)) | |
else: | |
args.model.load_state_dict(torch.load(args.output_model_path)) | |
evaluate(args, read_dataset(args, args.test_path)) | |
if __name__ == "__main__": | |
main() | |