VISOR-GPT / train /finetune /run_ner.py
szukevin's picture
upload
7900c16
raw
history blame
12.4 kB
"""
This script provides an example to wrap TencentPretrain for NER.
"""
import sys
import os
import random
import argparse
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.embeddings import *
from tencentpretrain.encoders import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.utils.optimizers import *
from tencentpretrain.utils.constants import *
from tencentpretrain.utils.vocab import Vocab
from tencentpretrain.utils.seed import set_seed
from tencentpretrain.utils.logging import init_logger
from tencentpretrain.utils.tokenizers import *
from tencentpretrain.model_saver import save_model
from tencentpretrain.opts import finetune_opts
from finetune.run_classifier import build_optimizer, load_or_initialize_parameters
class NerTagger(nn.Module):
def __init__(self, args):
super(NerTagger, self).__init__()
self.embedding = Embedding(args)
for embedding_name in args.embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.embedding.update(tmp_emb, embedding_name)
self.encoder = str2encoder[args.encoder](args)
self.labels_num = args.labels_num
self.output_layer = nn.Linear(args.hidden_size, self.labels_num)
self.crf_target = args.crf_target
if args.crf_target:
from torchcrf import CRF
self.crf = CRF(self.labels_num, batch_first=True)
self.seq_length = args.seq_length
def forward(self, src, tgt, seg):
"""
Args:
src: [batch_size x seq_length]
tgt: [batch_size x seq_length]
seg: [batch_size x seq_length]
Returns:
loss: Sequence labeling loss.
logits: Output logits.
"""
# Embedding.
emb = self.embedding(src, seg)
# Encoder.
output = self.encoder(emb, seg)
# Target.
logits = self.output_layer(output)
if self.crf_target:
tgt_mask = seg.type(torch.uint8)
pred = self.crf.decode(logits, mask=tgt_mask)
for j in range(len(pred)):
while len(pred[j]) < self.seq_length:
pred[j].append(self.labels_num - 1)
pred = torch.tensor(pred).contiguous().view(-1)
if tgt is not None:
loss = -self.crf(F.log_softmax(logits, 2), tgt, mask=tgt_mask, reduction='mean')
return loss, pred
else:
return None, pred
else:
tgt_mask = seg.contiguous().view(-1).float()
logits = logits.contiguous().view(-1, self.labels_num)
pred = logits.argmax(dim=-1)
if tgt is not None:
tgt = tgt.contiguous().view(-1, 1)
one_hot = torch.zeros(tgt.size(0), self.labels_num). \
to(torch.device(tgt.device)). \
scatter_(1, tgt, 1.0)
numerator = -torch.sum(nn.LogSoftmax(dim=-1)(logits) * one_hot, 1)
numerator = torch.sum(tgt_mask * numerator)
denominator = torch.sum(tgt_mask) + 1e-6
loss = numerator / denominator
return loss, pred
else:
return None, pred
def read_dataset(args, path):
dataset, columns = [], {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
columns[column_name] = i
continue
line = line.rstrip("\r\n").split("\t")
labels = line[columns["label"]]
tgt = [args.l2i[l] for l in labels.split(" ")]
text_a = line[columns["text_a"]]
src = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a))
seg = [1] * len(src)
if len(src) > args.seq_length:
src = src[: args.seq_length]
tgt = tgt[: args.seq_length]
seg = seg[: args.seq_length]
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
while len(src) < args.seq_length:
src.append(PAD_ID)
tgt.append(args.labels_num - 1)
seg.append(0)
dataset.append([src, tgt, seg])
return dataset
def batch_loader(batch_size, src, tgt, seg):
instances_num = src.size()[0]
for i in range(instances_num // batch_size):
src_batch = src[i * batch_size : (i + 1) * batch_size, :]
tgt_batch = tgt[i * batch_size : (i + 1) * batch_size, :]
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
yield src_batch, tgt_batch, seg_batch
if instances_num > instances_num // batch_size * batch_size:
src_batch = src[instances_num // batch_size * batch_size :, :]
tgt_batch = tgt[instances_num // batch_size * batch_size :, :]
seg_batch = seg[instances_num // batch_size * batch_size :, :]
yield src_batch, tgt_batch, seg_batch
def train(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch):
model.zero_grad()
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
loss, _ = model(src_batch, tgt_batch, seg_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
scheduler.step()
return loss
def evaluate(args, dataset):
src = torch.LongTensor([sample[0] for sample in dataset])
tgt = torch.LongTensor([sample[1] for sample in dataset])
seg = torch.LongTensor([sample[2] for sample in dataset])
instances_num = src.size(0)
batch_size = args.batch_size
correct, gold_entities_num, pred_entities_num = 0, 0, 0
args.model.eval()
for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, src, tgt, seg)):
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
loss, pred = args.model(src_batch, tgt_batch, seg_batch)
gold = tgt_batch.contiguous().view(-1, 1)
for j in range(gold.size()[0]):
if gold[j].item() in args.begin_ids:
gold_entities_num += 1
for j in range(pred.size()[0]):
if pred[j].item() in args.begin_ids and gold[j].item() != args.l2i["[PAD]"]:
pred_entities_num += 1
pred_entities_pos, gold_entities_pos = set(), set()
for j in range(gold.size()[0]):
if gold[j].item() in args.begin_ids:
start = j
for k in range(j + 1, gold.size()[0]):
if gold[k].item() == args.l2i["[PAD]"] or gold[k].item() == args.l2i["O"] or gold[k].item() in args.begin_ids:
end = k - 1
break
else:
end = gold.size()[0] - 1
gold_entities_pos.add((start, end))
for j in range(pred.size()[0]):
if pred[j].item() in args.begin_ids and gold[j].item() != args.l2i["[PAD]"]:
start = j
for k in range(j + 1, pred.size()[0]):
if pred[k].item() == args.l2i["[PAD]"] or pred[k].item() == args.l2i["O"] or pred[k].item() in args.begin_ids:
end = k - 1
break
else:
end = pred.size()[0] - 1
pred_entities_pos.add((start, end))
for entity in pred_entities_pos:
if entity not in gold_entities_pos:
continue
for j in range(entity[0], entity[1] + 1):
if gold[j].item() != pred[j].item():
break
else:
correct += 1
args.logger.info("Report precision, recall, and f1:")
eps = 1e-9
p = correct / (pred_entities_num + eps)
r = correct / (gold_entities_num + eps)
f1 = 2 * p * r / (p + r + eps)
args.logger.info("{:.3f}, {:.3f}, {:.3f}".format(p, r, f1))
return f1
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
parser.add_argument("--vocab_path", default=None, type=str,
help="Path of the vocabulary file.")
parser.add_argument("--spm_model_path", default=None, type=str,
help="Path of the sentence piece model.")
parser.add_argument("--label2id_path", type=str, required=True,
help="Path of the label2id file.")
parser.add_argument("--crf_target", action="store_true",
help="Use CRF loss as the target function or not, default False.")
args = parser.parse_args()
# Load the hyperparameters of the config file.
args = load_hyperparam(args)
# Get logger.
args.logger = init_logger(args)
set_seed(args.seed)
args.begin_ids = []
with open(args.label2id_path, mode="r", encoding="utf-8") as f:
l2i = json.load(f)
args.logger.info("Labels: " + str(l2i))
l2i["[PAD]"] = len(l2i)
for label in l2i:
if label.startswith("B"):
args.begin_ids.append(l2i[label])
args.l2i = l2i
args.labels_num = len(l2i)
args.tokenizer = SpaceTokenizer(args)
# Build sequence labeling model.
model = NerTagger(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
instances = read_dataset(args, args.train_path)
instances_num = len(instances)
batch_size = args.batch_size
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
args.logger.info("Batch size: {}".format(batch_size))
args.logger.info("The number of training instances: {}".format(instances_num))
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level = args.fp16_opt_level)
if torch.cuda.device_count() > 1:
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
total_loss, f1, best_f1 = 0.0, 0.0, 0.0
args.logger.info("Start training.")
for epoch in range(1, args.epochs_num + 1):
random.shuffle(instances)
src = torch.LongTensor([ins[0] for ins in instances])
tgt = torch.LongTensor([ins[1] for ins in instances])
seg = torch.LongTensor([ins[2] for ins in instances])
model.train()
for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, src, tgt, seg)):
loss = train(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
f1 = evaluate(args, read_dataset(args, args.dev_path))
if f1 > best_f1:
best_f1 = f1
save_model(model, args.output_model_path)
else:
continue
# Evaluation phase.
if args.test_path is not None:
args.logger.info("Test set evaluation.")
if torch.cuda.device_count() > 1:
args.model.module.load_state_dict(torch.load(args.output_model_path))
else:
args.model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()