VISOR-GPT / train /scripts /cloze_test.py
szukevin's picture
upload
7900c16
raw
history blame
5.88 kB
"""
This script provides an exmaple to wrap TencentPretrain for cloze test.
One character in a line is masked.
We should use the target that contains MLM.
"""
import sys
import os
import torch
import argparse
import random
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.embeddings import *
from tencentpretrain.encoders import *
from tencentpretrain.targets import *
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.model_loader import load_model
from tencentpretrain.opts import infer_opts, tokenizer_opts
def mask_token(tokens, seq_length, tokenizer):
"""
Mask a random token for prediction.
"""
start = 1
end = len(tokens) if len(tokens) < seq_length else seq_length
mask_pos = random.randint(start, end-1)
token = tokens[mask_pos]
tokens[mask_pos] = tokenizer.convert_tokens_to_ids([MASK_TOKEN])[0]
return (tokens, mask_pos, token)
def batch_loader(batch_size, src, seg, mask_pos, label):
instances_num = src.size(0)
for i in range(instances_num // batch_size):
src_batch = src[i * batch_size : (i + 1) * batch_size, :]
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
mask_pos_batch = mask_pos[i * batch_size : (i + 1) * batch_size]
label_batch = label[i * batch_size : (i + 1) * batch_size]
yield src_batch, seg_batch, mask_pos_batch, label_batch
if instances_num > instances_num // batch_size * batch_size:
src_batch = src[instances_num // batch_size * batch_size :, :]
seg_batch = seg[instances_num // batch_size * batch_size :, :]
mask_pos_batch = mask_pos[instances_num // batch_size * batch_size :]
label_batch = label[instances_num // batch_size * batch_size :]
yield src_batch, seg_batch, mask_pos_batch, label_batch
def read_dataset(args, path):
dataset = []
PAD_ID = args.tokenizer.vocab.get(PAD_TOKEN)
with open(path, mode="r", encoding="utf-8") as f:
for line in f:
src = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(line.strip()))
if len(src) == 0:
continue
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN]) + src + args.tokenizer.convert_tokens_to_ids([SEP_TOKEN])
src, mask_pos, label = mask_token(src, args.seq_length, args.tokenizer)
seg = [1] * len(src)
if len(src) > args.seq_length:
src = src[:args.seq_length]
seg = seg[:args.seq_length]
while len(src) < args.seq_length:
src.append(PAD_ID)
seg.append(PAD_ID)
dataset.append((src, seg, mask_pos, label))
return dataset
class ClozeTest(torch.nn.Module):
def __init__(self, args):
super(ClozeTest, self).__init__()
self.embedding = str2embedding[args.embedding](args, len(args.tokenizer.vocab))
self.encoder = str2encoder[args.encoder](args)
self.target = MlmTarget(args, len(args.tokenizer.vocab))
self.act = str2act[args.hidden_act]
def forward(self, src, seg):
emb = self.embedding(src, seg)
output = self.encoder(emb, seg)
output = self.act(self.target.mlm_linear_1(output))
output = self.target.layer_norm(output)
output = self.target.mlm_linear_2(output)
prob = torch.nn.Softmax(dim=-1)(output)
return prob
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
infer_opts(parser)
tokenizer_opts(parser)
parser.add_argument("--topn", type=int, default=10,
help="Print top n nearest neighbours.")
args = parser.parse_args()
args.target = "mlm"
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
args.tokenizer = str2tokenizer[args.tokenizer](args)
# Build cloze test model.
model = ClozeTest(args)
model = load_model(model, args.load_model_path)
# For simplicity, we use DataParallel wrapper to use multiple GPUs.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
if torch.cuda.device_count() > 1:
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
model.eval()
dataset = read_dataset(args, args.test_path)
src = torch.LongTensor([sample[0] for sample in dataset])
seg = torch.LongTensor([sample[1] for sample in dataset])
mask_pos = [sample[2] for sample in dataset]
label = [sample[3] for sample in dataset]
f_pred = open(args.prediction_path, mode="w", encoding="utf-8")
for i, (src_batch, seg_batch, mask_pos_batch, label_batch) in \
enumerate(batch_loader(args.batch_size, src, seg, mask_pos, label)):
src_batch = src_batch.to(device)
seg_batch = seg_batch.to(device)
prob = model(src_batch, seg_batch)
for j, p in enumerate(mask_pos_batch):
topn_ids = (-prob[j][p]).argsort()[:args.topn]
sentence = "".join([args.tokenizer.convert_ids_to_tokens([token_id.item()])[0] for token_id in src_batch[j] if token_id != 0])
pred_tokens = " ".join(args.tokenizer.convert_ids_to_tokens([token_id.item()])[0] for token_id in topn_ids)
label_token = args.tokenizer.convert_ids_to_tokens([label_batch[j]])[0]
f_pred.write(sentence + '\n')
f_pred.write("Predicted answer: " + pred_tokens + '\n')
f_pred.write("Correct answer: " + label_token + '\n')
f_pred.write("\n")
f_pred.close()