VISOR-GPT / train /scripts /convert_tencentpretrain_from_old_to_new.py
szukevin's picture
upload
7900c16
raw
history blame
6.39 kB
import sys
import os
import argparse
import collections
import torch
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.utils.config import load_hyperparam
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--input_model_path", type=str, default="models/input_model.bin",
help=".")
parser.add_argument("--output_model_path", type=str, default="models/output_model.bin",
help=".")
parser.add_argument("--config_path", type=str,
help=".")
args = parser.parse_args()
args = load_hyperparam(args)
input_model = torch.load(args.input_model_path)
if "word" in args.embedding:
input_model["embedding.word.embedding.weight"] = input_model["embedding.word_embedding.weight"]
input_model.pop("embedding.word_embedding.weight")
if "pos" in args.embedding:
input_model["embedding.pos.embedding.weight"] = input_model["embedding.position_embedding.weight"]
input_model.pop("embedding.position_embedding.weight")
if "seg" in args.embedding:
input_model["embedding.seg.embedding.weight"] = input_model["embedding.segment_embedding.weight"]
input_model.pop("embedding.segment_embedding.weight")
if "sinusoidalpos" in args.embedding:
input_model["embedding.sinusoidalpos.pe"] = input_model["embedding.pe"]
input_model.pop("embedding.pe")
if hasattr(args, "decoder") and args.decoder is not None:
for n in list(input_model.keys()): # target.decoder -> decoder
if n.split('.')[1] == "decoder":
input_model[".".join(n.split('.')[1:])] = input_model[n]
input_model.pop(n)
if n.split('.')[1] == "embedding":
input_model[".".join(["tgt_embedding"] + n.split('.')[2:])] = input_model[n]
input_model.pop(n)
if "word" in args.embedding:
input_model["tgt_embedding.word.embedding.weight"] = input_model["tgt_embedding.word_embedding.weight"]
input_model.pop("tgt_embedding.word_embedding.weight")
if "pos" in args.embedding:
input_model["tgt_embedding.pos.embedding.weight"] = input_model["tgt_embedding.position_embedding.weight"]
input_model.pop("tgt_embedding.position_embedding.weight")
if "seg" in args.embedding:
input_model["tgt_embedding.seg.embedding.weight"] = input_model["tgt_embedding.segment_embedding.weight"]
input_model.pop("tgt_embedding.segment_embedding.weight")
if "sinusoidalpos" in args.embedding:
input_model["tgt_embedding.sinusoidalpos.pe"] = input_model["tgt_embedding.pe"]
input_model.pop("tgt_embedding.pe")
if "mlm" in args.target:
try:
input_model["target.mlm.linear_1.weight"] = input_model["target.mlm_linear_1.weight"]
input_model.pop("target.mlm_linear_1.weight")
input_model["target.mlm.linear_1.bias"] = input_model["target.mlm_linear_1.bias"]
input_model.pop("target.mlm_linear_1.bias")
input_model["target.mlm.layer_norm.gamma"] = input_model["target.layer_norm.gamma"]
input_model.pop("target.layer_norm.gamma")
input_model["target.mlm.layer_norm.beta"] = input_model["target.layer_norm.beta"]
input_model.pop("target.layer_norm.beta")
input_model["target.mlm.linear_2.weight"] = input_model["target.mlm_linear_2.weight"]
input_model.pop("target.mlm_linear_2.weight")
input_model["target.mlm.linear_2.bias"] = input_model["target.mlm_linear_2.bias"]
input_model.pop("target.mlm_linear_2.bias")
except:
pass
if "sp" in args.target:
try:
input_model["target.sp.linear_1.weight"] = input_model["target.sp_linear_1.weight"]
input_model.pop("target.sp_linear_1.weight")
input_model["target.sp.linear_1.bias"] = input_model["target.sp_linear_1.bias"]
input_model.pop("target.sp_linear_1.bias")
input_model["target.sp.linear_2.weight"] = input_model["target.sp_linear_2.weight"]
input_model.pop("target.sp_linear_2.weight")
input_model["target.sp.linear_2.bias"] = input_model["target.sp_linear_2.bias"]
input_model.pop("target.sp_linear_2.bias")
except:
pass
try:
input_model["target.sp.linear_1.weight"] = input_model["target.nsp_linear_1.weight"]
input_model.pop("target.nsp_linear_1.weight")
input_model["target.sp.linear_1.bias"] = input_model["target.nsp_linear_1.bias"]
input_model.pop("target.nsp_linear_1.bias")
input_model["target.sp.linear_2.weight"] = input_model["target.nsp_linear_2.weight"]
input_model.pop("target.nsp_linear_2.weight")
input_model["target.sp.linear_2.bias"] = input_model["target.nsp_linear_2.bias"]
input_model.pop("target.nsp_linear_2.bias")
except:
pass
try:
input_model["target.sp.linear_1.weight"] = input_model["target.sop_linear_1.weight"]
input_model.pop("target.sop_linear_1.weight")
input_model["target.sp.linear_1.bias"] = input_model["target.sop_linear_1.bias"]
input_model.pop("target.sop_linear_1.bias")
input_model["target.sp.linear_2.weight"] = input_model["target.sop_linear_2.weight"]
input_model.pop("target.sop_linear_2.weight")
input_model["target.sp.linear_2.bias"] = input_model["target.sop_linear_2.bias"]
input_model.pop("target.sop_linear_2.bias")
except:
pass
if "lm" in args.target:
try:
input_model["target.lm.output_layer.weight"] = input_model["target.output_layer.weight"]
input_model.pop("target.output_layer.weight")
if args.has_lmtarget_bias:
input_model["target.lm.output_layer.bias"] = input_model["target.output_layer.bias"]
input_model.pop("target.output_layer.bias")
except:
pass
torch.save(input_model, args.output_model_path)
if __name__ == "__main__":
main()