Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for C3 (a multiple choice dataset). | |
""" | |
import sys | |
import os | |
import argparse | |
import json | |
import random | |
import torch | |
import torch.nn as nn | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.embeddings import * | |
from tencentpretrain.encoders import * | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils import * | |
from tencentpretrain.utils.optimizers import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.utils.seed import set_seed | |
from tencentpretrain.utils.logging import init_logger | |
from tencentpretrain.model_saver import save_model | |
from tencentpretrain.opts import finetune_opts, tokenizer_opts, adv_opts | |
from finetune.run_classifier import build_optimizer, load_or_initialize_parameters, train_model, batch_loader, evaluate | |
class MultipleChoice(nn.Module): | |
def __init__(self, args): | |
super(MultipleChoice, self).__init__() | |
self.embedding = Embedding(args) | |
for embedding_name in args.embedding: | |
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) | |
self.embedding.update(tmp_emb, embedding_name) | |
self.encoder = str2encoder[args.encoder](args) | |
self.dropout = nn.Dropout(args.dropout) | |
self.output_layer = nn.Linear(args.hidden_size, 1) | |
def forward(self, src, tgt, seg, soft_tgt=None): | |
""" | |
Args: | |
src: [batch_size x choices_num x seq_length] | |
tgt: [batch_size] | |
seg: [batch_size x choices_num x seq_length] | |
""" | |
choices_num = src.shape[1] | |
src = src.view(-1, src.size(-1)) | |
seg = seg.view(-1, seg.size(-1)) | |
# Embedding. | |
emb = self.embedding(src, seg) | |
# Encoder. | |
output = self.encoder(emb, seg) | |
output = self.dropout(output) | |
logits = self.output_layer(output[:, 0, :]) | |
reshaped_logits = logits.view(-1, choices_num) | |
if tgt is not None: | |
loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(reshaped_logits), tgt.view(-1)) | |
return loss, reshaped_logits | |
else: | |
return None, reshaped_logits | |
def read_dataset(args, path): | |
with open(path, mode="r", encoding="utf-8") as f: | |
data = json.load(f) | |
examples = [] | |
for i in range(len(data)): | |
for j in range(len(data[i][1])): | |
example = ["\n".join(data[i][0]).lower(), data[i][1][j]["question"].lower()] | |
for k in range(len(data[i][1][j]["choice"])): | |
example += [data[i][1][j]["choice"][k].lower()] | |
for k in range(len(data[i][1][j]["choice"]), args.max_choices_num): | |
example += ["No Answer"] | |
example += [data[i][1][j].get("answer", "").lower()] | |
examples += [example] | |
dataset = [] | |
for i, example in enumerate(examples): | |
tgt = 0 | |
for k in range(args.max_choices_num): | |
if example[2 + k] == example[6]: | |
tgt = k | |
dataset.append(([], tgt, [])) | |
for k in range(args.max_choices_num): | |
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(example[k + 2]) + [SEP_TOKEN]) | |
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(example[1]) + [SEP_TOKEN]) | |
src_c = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(example[0]) + [SEP_TOKEN]) | |
src = src_a + src_b + src_c | |
seg = [1] * (len(src_a) + len(src_b)) + [2] * len(src_c) | |
if len(src) > args.seq_length: | |
src = src[: args.seq_length] | |
seg = seg[: args.seq_length] | |
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] | |
while len(src) < args.seq_length: | |
src.append(PAD_ID) | |
seg.append(0) | |
dataset[-1][0].append(src) | |
dataset[-1][2].append(seg) | |
return dataset | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
finetune_opts(parser) | |
parser.add_argument("--max_choices_num", default=4, type=int, | |
help="The maximum number of cadicate answer, shorter than this will be padded.") | |
tokenizer_opts(parser) | |
adv_opts(parser) | |
args = parser.parse_args() | |
args.labels_num = args.max_choices_num | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
set_seed(args.seed) | |
# Build tokenizer. | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
# Build multiple choice model. | |
model = MultipleChoice(args) | |
# Load or initialize parameters. | |
load_or_initialize_parameters(args, model) | |
# Get logger. | |
args.logger = init_logger(args) | |
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(args.device) | |
# Training phase. | |
trainset = read_dataset(args, args.train_path) | |
instances_num = len(trainset) | |
batch_size = args.batch_size | |
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1 | |
args.logger.info("Batch size: {}".format(batch_size)) | |
args.logger.info("The number of training instances: {}".format(instances_num)) | |
optimizer, scheduler = build_optimizer(args, model) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
args.amp = amp | |
if torch.cuda.device_count() > 1: | |
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
args.model = model | |
if args.use_adv: | |
args.adv_method = str2adv[args.adv_type](model) | |
total_loss, result, best_result = 0.0, 0.0, 0.0 | |
args.logger.info("Start training.") | |
for epoch in range(1, args.epochs_num + 1): | |
random.shuffle(trainset) | |
src = torch.LongTensor([example[0] for example in trainset]) | |
tgt = torch.LongTensor([example[1] for example in trainset]) | |
seg = torch.LongTensor([example[2] for example in trainset]) | |
model.train() | |
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)): | |
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch) | |
total_loss += loss.item() | |
if (i + 1) % args.report_steps == 0: | |
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps)) | |
total_loss = 0.0 | |
result = evaluate(args, read_dataset(args, args.dev_path)) | |
if result[0] > best_result: | |
best_result = result[0] | |
save_model(model, args.output_model_path) | |
# Evaluation phase. | |
if args.test_path is not None: | |
args.logger.info("Test set evaluation.") | |
if torch.cuda.device_count() > 1: | |
args.model.module.load_state_dict(torch.load(args.output_model_path)) | |
else: | |
args.model.load_state_dict(torch.load(args.output_model_path)) | |
evaluate(args, read_dataset(args, args.test_path)) | |
if __name__ == "__main__": | |
main() | |