szukevin's picture
upload
7900c16
raw
history blame
7.52 kB
"""
This script provides an example to wrap TencentPretrain for C3 (a multiple choice dataset).
"""
import sys
import os
import argparse
import json
import random
import torch
import torch.nn as nn
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.embeddings import *
from tencentpretrain.encoders import *
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.optimizers import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.utils.seed import set_seed
from tencentpretrain.utils.logging import init_logger
from tencentpretrain.model_saver import save_model
from tencentpretrain.opts import finetune_opts, tokenizer_opts, adv_opts
from finetune.run_classifier import build_optimizer, load_or_initialize_parameters, train_model, batch_loader, evaluate
class MultipleChoice(nn.Module):
def __init__(self, args):
super(MultipleChoice, self).__init__()
self.embedding = Embedding(args)
for embedding_name in args.embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.embedding.update(tmp_emb, embedding_name)
self.encoder = str2encoder[args.encoder](args)
self.dropout = nn.Dropout(args.dropout)
self.output_layer = nn.Linear(args.hidden_size, 1)
def forward(self, src, tgt, seg, soft_tgt=None):
"""
Args:
src: [batch_size x choices_num x seq_length]
tgt: [batch_size]
seg: [batch_size x choices_num x seq_length]
"""
choices_num = src.shape[1]
src = src.view(-1, src.size(-1))
seg = seg.view(-1, seg.size(-1))
# Embedding.
emb = self.embedding(src, seg)
# Encoder.
output = self.encoder(emb, seg)
output = self.dropout(output)
logits = self.output_layer(output[:, 0, :])
reshaped_logits = logits.view(-1, choices_num)
if tgt is not None:
loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(reshaped_logits), tgt.view(-1))
return loss, reshaped_logits
else:
return None, reshaped_logits
def read_dataset(args, path):
with open(path, mode="r", encoding="utf-8") as f:
data = json.load(f)
examples = []
for i in range(len(data)):
for j in range(len(data[i][1])):
example = ["\n".join(data[i][0]).lower(), data[i][1][j]["question"].lower()]
for k in range(len(data[i][1][j]["choice"])):
example += [data[i][1][j]["choice"][k].lower()]
for k in range(len(data[i][1][j]["choice"]), args.max_choices_num):
example += ["No Answer"]
example += [data[i][1][j].get("answer", "").lower()]
examples += [example]
dataset = []
for i, example in enumerate(examples):
tgt = 0
for k in range(args.max_choices_num):
if example[2 + k] == example[6]:
tgt = k
dataset.append(([], tgt, []))
for k in range(args.max_choices_num):
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(example[k + 2]) + [SEP_TOKEN])
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(example[1]) + [SEP_TOKEN])
src_c = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(example[0]) + [SEP_TOKEN])
src = src_a + src_b + src_c
seg = [1] * (len(src_a) + len(src_b)) + [2] * len(src_c)
if len(src) > args.seq_length:
src = src[: args.seq_length]
seg = seg[: args.seq_length]
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
while len(src) < args.seq_length:
src.append(PAD_ID)
seg.append(0)
dataset[-1][0].append(src)
dataset[-1][2].append(seg)
return dataset
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
parser.add_argument("--max_choices_num", default=4, type=int,
help="The maximum number of cadicate answer, shorter than this will be padded.")
tokenizer_opts(parser)
adv_opts(parser)
args = parser.parse_args()
args.labels_num = args.max_choices_num
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
# Build multiple choice model.
model = MultipleChoice(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
# Get logger.
args.logger = init_logger(args)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path)
instances_num = len(trainset)
batch_size = args.batch_size
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
args.logger.info("Batch size: {}".format(batch_size))
args.logger.info("The number of training instances: {}".format(instances_num))
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
if args.use_adv:
args.adv_method = str2adv[args.adv_type](model)
total_loss, result, best_result = 0.0, 0.0, 0.0
args.logger.info("Start training.")
for epoch in range(1, args.epochs_num + 1):
random.shuffle(trainset)
src = torch.LongTensor([example[0] for example in trainset])
tgt = torch.LongTensor([example[1] for example in trainset])
seg = torch.LongTensor([example[2] for example in trainset])
model.train()
for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, read_dataset(args, args.dev_path))
if result[0] > best_result:
best_result = result[0]
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
args.logger.info("Test set evaluation.")
if torch.cuda.device_count() > 1:
args.model.module.load_state_dict(torch.load(args.output_model_path))
else:
args.model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()