Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for multi-label classification inference. | |
""" | |
import sys | |
import os | |
import torch | |
import argparse | |
import collections | |
import torch.nn as nn | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.utils.seed import set_seed | |
from tencentpretrain.model_loader import load_model | |
from tencentpretrain.opts import infer_opts, tokenizer_opts | |
from finetune.run_classifier_multi_label import MultilabelClassifier | |
from inference.run_classifier_infer import read_dataset | |
from inference.run_classifier_infer import batch_loader | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
infer_opts(parser) | |
parser.add_argument("--labels_num", type=int, required=True, | |
help="Number of prediction labels.") | |
tokenizer_opts(parser) | |
parser.add_argument("--output_logits", action="store_true", help="Write logits to output file.") | |
parser.add_argument("--output_prob", action="store_true", help="Write probabilities to output file.") | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
# Build tokenizer. | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
# Build classification model and load parameters. | |
args.soft_targets, args.soft_alpha = False, False | |
model = MultilabelClassifier(args) | |
model = load_model(model, args.load_model_path) | |
# For simplicity, we use DataParallel wrapper to use multiple GPUs. | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
if torch.cuda.device_count() > 1: | |
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
dataset = read_dataset(args, args.test_path) | |
src = torch.LongTensor([sample[0] for sample in dataset]) | |
seg = torch.LongTensor([sample[1] for sample in dataset]) | |
batch_size = args.batch_size | |
instances_num = src.size()[0] | |
print("The number of prediction instances: ", instances_num) | |
model.eval() | |
with open(args.prediction_path, mode="w", encoding="utf-8") as f: | |
f.write("label") | |
if args.output_logits: | |
f.write("\t" + "logits") | |
if args.output_prob: | |
f.write("\t" + "prob") | |
f.write("\n") | |
for i, (src_batch, seg_batch) in enumerate(batch_loader(batch_size, src, seg)): | |
src_batch = src_batch.to(device) | |
seg_batch = seg_batch.to(device) | |
with torch.no_grad(): | |
_, logits = model(src_batch, None, seg_batch) | |
prob = nn.Sigmoid()(logits) | |
prob = prob.cpu().numpy().tolist() | |
logits = logits.cpu().numpy().tolist() | |
for i, p in enumerate(prob): | |
label = list() | |
for j in range(len(p)): | |
if p[j] > 0.5: | |
label.append(str(j)) | |
f.write(",".join(label)) | |
if args.output_logits: | |
f.write("\t" + " ".join([str(v) for v in logits[i]])) | |
if args.output_prob: | |
f.write("\t" + " ".join([str(v) for v in p])) | |
f.write("\n") | |
if __name__ == "__main__": | |
main() | |