Bloom_chat / app.py
tafxle's picture
tested env
d30d41e
raw
history blame
2.14 kB
import torch
import transformers
import time
from huggingface_hub import hf_hub_download
import streamlit as st
@st.cache(allow_output_mutation=True)
def load_model():
fpath = hf_hub_download("OpenDungeon/gpt-j-8bit-ffbgem", "model.pt")
qmodel = torch.load(fpath)
return transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B"), qmodel
def PrintContinuation(prompt, local_model, single_hook=None, batch=1, limit_tokens = 50):
past_key_values = None # used to keep track of conversation history
input_dict = tokenizer([prompt] * batch, return_tensors='pt', padding=False)
output = [""] * batch
batch_time = 0
with torch.inference_mode():
for i in range(limit_tokens + 20):
if i == 5:
start_time = time.perf_counter()
outputs = local_model.forward(**input_dict, use_cache=True, past_key_values=past_key_values)
last_logits = outputs.logits[:, -1]
for j in range(batch):
last_logits[j, last_logits[j].topk(k=10).indices] += 10
past_key_values = outputs.past_key_values
token_ix = torch.multinomial(last_logits.softmax(-1), 1)
output = [stream + tokenizer.decode(ix) for stream, ix in zip(output, token_ix)]
if single_hook is not None:
single_hook(tokenizer.decode(token_ix[0]))
if i == limit_tokens:
batch_time = (time.perf_counter() - start_time) / (i - 4)
break
input_dict = dict(input_ids=token_ix)
return output, batch_time
tokenizer, model = load_model()
text = st.text_area("Prefix", value="DM: You enter the room.")
batch = st.number_input("Variants", value=5)
t = st.empty()
firstline = ""
def PrintSome(text):
global t, firstline
firstline += text
t.markdown(f"{firstline}...")
choices, batch_time = PrintContinuation(text, model, PrintSome, batch, 50)
final_page = ""
for i in range(batch):
final_page += f"## choice №{i + 1} \n{choices[i]} \n______ \n"
final_page = f"Seconds per batch: {batch_time}, Batch: {batch}"
t.markdown(final_page)