Spaces:
Runtime error
Runtime error
import torch | |
import transformers | |
import time | |
from huggingface_hub import hf_hub_download | |
import streamlit as st | |
def load_model(): | |
fpath = hf_hub_download("OpenDungeon/gpt-j-8bit-ffbgem", "model.pt") | |
qmodel = torch.load(fpath) | |
return transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B"), qmodel | |
def PrintContinuation(prompt, local_model, single_hook=None, batch=1, limit_tokens = 50): | |
past_key_values = None # used to keep track of conversation history | |
input_dict = tokenizer([prompt] * batch, return_tensors='pt', padding=False) | |
output = [""] * batch | |
batch_time = 0 | |
with torch.inference_mode(): | |
for i in range(limit_tokens + 20): | |
if i == 5: | |
start_time = time.perf_counter() | |
outputs = local_model.forward(**input_dict, use_cache=True, past_key_values=past_key_values) | |
last_logits = outputs.logits[:, -1] | |
for j in range(batch): | |
last_logits[j, last_logits[j].topk(k=10).indices] += 10 | |
past_key_values = outputs.past_key_values | |
token_ix = torch.multinomial(last_logits.softmax(-1), 1) | |
output = [stream + tokenizer.decode(ix) for stream, ix in zip(output, token_ix)] | |
if single_hook is not None: | |
single_hook(tokenizer.decode(token_ix[0])) | |
if i == limit_tokens: | |
batch_time = (time.perf_counter() - start_time) / (i - 4) | |
break | |
input_dict = dict(input_ids=token_ix) | |
return output, batch_time | |
tokenizer, model = load_model() | |
text = st.text_area("Prefix", value="DM: You enter the room.") | |
batch = st.number_input("Variants", value=5) | |
t = st.empty() | |
firstline = "" | |
def PrintSome(text): | |
global t, firstline | |
firstline += text | |
t.markdown(f"{firstline}...") | |
choices, batch_time = PrintContinuation(text, model, PrintSome, batch, 50) | |
final_page = "" | |
for i in range(batch): | |
final_page += f"## choice №{i + 1} \n{choices[i]} \n______ \n" | |
final_page = f"Seconds per batch: {batch_time}, Batch: {batch}" | |
t.markdown(final_page) |