Spaces:
Sleeping
Sleeping
File size: 1,423 Bytes
5f61664 46e65a1 8c08500 46e65a1 87947a4 46e65a1 87947a4 5f61664 8c08500 7861bab 8c08500 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
import torch
from transformers import DetrForObjectDetection, DetrImageProcessor, AutoModel
import supervision as sv
from supervision.detection.annotate import BoxAnnotator
from supervision.utils.notebook import plot_image
og_model = 'facebook/detr-resnet-50'
image_processor = DetrImageProcessor.from_pretrained(og_model)
model = AutoModel.from_pretrained("taroii/notfinetuned-detr-50")
def predict(image):
with torch.no_grad():
# load image and predict
inputs = image_processor(images=image, return_tensors='pt')
outputs = model(**inputs)
# post-process
target_sizes = torch.tensor([image.shape[:2]])
results = image_processor.post_process_object_detection(
outputs=outputs,
threshold=CONFIDENCE_TRESHOLD,
target_sizes=target_sizes
)[0]
# annotate
detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.5)
labels = [f"{id2label[class_id]} {confidence:.2f}" for _, confidence, class_id, _ in detections]
frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels)
#return plot_image(frame, (16, 16))
return frame
gr.Interface(
predict,
inputs=gr.inputs.Image(label="Upload hot dog candidate", type="filepath"),
outputs=gr.Image(),
title="Non-Fine-Tuned Model"
).launch() |