File size: 14,127 Bytes
e56ce5e
9dabfa9
e56ce5e
 
 
0242b2e
e56ce5e
85f28d9
1e9f08c
a45b5da
002e3e5
0242b2e
 
50cfa80
e56ce5e
9dabfa9
 
 
 
 
 
6aef44f
9dabfa9
 
31ff64f
002e3e5
9dabfa9
0242b2e
 
e56ce5e
9dabfa9
e56ce5e
1b9fec9
a45b5da
002e3e5
1b9fec9
002e3e5
 
1b9fec9
 
002e3e5
 
a45b5da
 
 
1b9fec9
 
56e7f3c
 
1b9fec9
 
a45b5da
002e3e5
a45b5da
1b9fec9
 
002e3e5
1b9fec9
e56ce5e
9dabfa9
e56ce5e
e45aab0
 
e56ce5e
 
9dabfa9
942d759
 
1e9f08c
942d759
 
dc91354
e56ce5e
 
 
 
 
b2a7368
e56ce5e
 
042b8a4
e56ce5e
 
 
 
 
 
 
 
e45aab0
e56ce5e
 
e45aab0
 
 
e56ce5e
 
e45aab0
e56ce5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e45aab0
9dabfa9
43f46f9
 
e45aab0
 
43f46f9
e45aab0
e56ce5e
e45aab0
 
 
 
 
 
 
43f46f9
 
 
e45aab0
e56ce5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e45aab0
e56ce5e
e45aab0
 
e7ea687
9dabfa9
 
 
e56ce5e
 
9dabfa9
e56ce5e
9dabfa9
 
 
e56ce5e
 
 
 
 
 
a45b5da
 
e56ce5e
 
 
 
 
 
 
 
9dabfa9
e56ce5e
9dabfa9
 
 
 
 
809fc00
e45aab0
3f03f2a
a45b5da
e56ce5e
 
 
 
 
 
 
9dabfa9
 
 
 
e56ce5e
9dabfa9
e56ce5e
 
9dabfa9
44fc84f
 
e56ce5e
 
ee5b418
e45aab0
 
e7ea687
9dabfa9
 
 
e56ce5e
 
 
 
 
 
 
 
 
 
 
 
9dabfa9
 
e56ce5e
 
 
 
 
 
 
e45aab0
 
 
 
 
e56ce5e
e45aab0
 
e56ce5e
 
102b976
1e9f08c
6aef44f
 
e45aab0
e56ce5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dabfa9
 
 
 
e56ce5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import time
import sys
import streamlit as st
import string
from io import StringIO 
import pdb
import json
from twc_embeddings import HFModel,SimCSEModel,SGPTModel
import torch
import requests
import socket


MAX_INPUT = 100

SEM_SIMILARITY="1"
DOC_RETRIEVAL="2"
CLUSTERING="3"


use_case = {"1":"Finding similar phrases/sentences","2":"Retrieving semantically matching information to a query. It may not be a factual match","3":"Clustering"}
use_case_url = {"1":"https://huggingface.co/spaces/taskswithcode/semantic_similarity","2":"https://huggingface.co/spaces/taskswithcode/semantic_search","3":"https://huggingface.co/spaces/taskswithcode/semantic_clustering"}


APP_NAME = "hf/semantic_similarity"
INFO_URL = "http://www.taskswithcode.com/stats/"


from transformers import BertTokenizer, BertForMaskedLM




def get_views(action):
    print("in get views",action)
    ret_val = 0
    hostname = socket.gethostname()
    ip_address = socket.gethostbyname(hostname)
    if ("view_count" not in st.session_state):
        try:
           print("inside get views")
           app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
           res = requests.post(INFO_URL, json = app_info).json()
           print(res)
           data = res["count"]
        except:
           data = 0
        ret_val = data
        st.session_state["view_count"] = data
    else:
        ret_val = st.session_state["view_count"]
        if (action != "init"):
           app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
           res = requests.post(INFO_URL, json = app_info).json()
    return "{:,}".format(ret_val)
        
        


def construct_model_info_for_display(model_names):
    options_arr  = []
    markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/><i>These are either state-of-the-art or the most downloaded models on Huggingface</i></div>"
    markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>"
    for node in model_names:
        options_arr .append(node["name"])
        if (node["mark"] == "True"):
            markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\">&nbsp;•&nbsp;Model:&nbsp;<a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Code released by:&nbsp;<a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Model info:&nbsp;<a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a></div>"
            if ("Note" in node):
                markdown_str += f"<div style=\"font-size:16px; color: #a91212; text-align: left\">&nbsp;&nbsp;&nbsp;&nbsp;{node['Note']}<a href=\'{node['alt_url']}\' target='_blank'>link</a></div>"
            markdown_str += "<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"><br/></div>"
        
    markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><b>Note:</b><br/>•&nbsp;Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not cached</div>"
    limit = "{:,}".format(MAX_INPUT)
    markdown_str += f"<div style=\"font-size:12px; color: #9f9f9f; text-align: left\">•&nbsp;User uploaded file has a maximum limit of {limit} sentences.</div>"
    return options_arr,markdown_str


st.set_page_config(page_title='TWC - Compare popular/state-of-the-art models for sentence similarity using sentence embeddings', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto',
            menu_items={
             'About': 'This app was created by taskswithcode. http://taskswithcode.com'
             
              })
col,pad = st.columns([85,15])

with col:
    st.image("long_form_logo_with_icon.png")


@st.experimental_memo
def load_model(model_name,model_class,load_model_name):
    try:
        ret_model = None
        obj_class = globals()[model_class]
        ret_model = obj_class()
        ret_model.init_model(load_model_name)
        assert(ret_model is not None)
    except Exception as e:
        st.error("Unable to load model:" + model_name + " " + load_model_name + " " +  str(e))
        pass
    return ret_model

  
@st.experimental_memo
def cached_compute_similarity(sentences,_model,model_name,main_index):
    texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
    results = _model.output_results(None,texts,embeddings,main_index)
    return results


def uncached_compute_similarity(sentences,_model,model_name,main_index):
    with st.spinner('Computing vectors for sentences'):
        texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
        results = _model.output_results(None,texts,embeddings,main_index)
    #st.success("Similarity computation complete")
    return results

DEFAULT_HF_MODEL = "sentence-transformers/paraphrase-MiniLM-L6-v2"
def get_model_info(model_names,model_name):
    for node in model_names:
        if (model_name == node["name"]):
            return node,model_name
    return get_model_info(model_names,DEFAULT_HF_MODEL)

def run_test(model_names,model_name,sentences,display_area,main_index,user_uploaded,custom_model):
    display_area.text("Loading model:" + model_name)
    #Note. model_name may get mapped to new name in the call below for custom models
    orig_model_name = model_name
    model_info,model_name = get_model_info(model_names,model_name)
    if (model_name != orig_model_name):
        load_model_name  = orig_model_name
    else:
        load_model_name = model_info["model"]
    if ("Note" in model_info):
        fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
        display_area.write(fail_link)
    model = load_model(model_name,model_info["class"],load_model_name)
    display_area.text("Model " + model_name  + " load complete")
    try:
            if (user_uploaded):
                results = uncached_compute_similarity(sentences,model,model_name,main_index)
            else:
                display_area.text("Computing vectors for sentences")
                results = cached_compute_similarity(sentences,model,model_name,main_index)
                display_area.text("Similarity computation complete")
            return results
            
    except Exception as e:
        st.error("Some error occurred during prediction" + str(e))
        st.stop()
    return {}



    

def display_results(orig_sentences,main_index,results,response_info,app_mode,model_name):
    main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
    main_sent += f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">Showing results for model:&nbsp;<b>{model_name}</b></div>"
    score_text = "cosine distance" if app_mode == SEM_SIMILARITY else "cosine distance/score"
    pivot_name = "main sentence" if app_mode == SEM_SIMILARITY else "query"
    main_sent += f"<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Results sorted by {score_text}. Closest to furthest away from {pivot_name}</div>"
    pivot_name = pivot_name[0].upper() + pivot_name[1:]
    main_sent += f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><b>{pivot_name}:</b>&nbsp;&nbsp;{orig_sentences[main_index]}</div>"
    body_sent = []
    download_data = {}
    first = True
    for key in results:
        if (app_mode == DOC_RETRIEVAL and first):
            first = False
            continue
        index = orig_sentences.index(key) + 1
        body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">{index}]&nbsp;{key}&nbsp;&nbsp;&nbsp;<b>{results[key]:.2f}</b></div>")
        download_data[key] =  f"{results[key]:.2f}" 
    main_sent = main_sent + "\n" + '\n'.join(body_sent)
    st.markdown(main_sent,unsafe_allow_html=True)
    st.session_state["download_ready"] = json.dumps(download_data,indent=4)
    get_views("submit")
    


def init_session():
    st.session_state["download_ready"] = None    
    st.session_state["model_name"] = "ss_test"
    st.session_state["main_index"] = 1
    st.session_state["file_name"] = "default"
 
def app_main(app_mode,example_files,model_name_files):
  init_session()
  with open(example_files) as fp:
        example_file_names = json.load(fp) 
  with open(model_name_files) as fp:
        model_names = json.load(fp)
  curr_use_case = use_case[app_mode].split(".")[0]
  st.markdown("<h5 style='text-align: center;'>Compare state-of-the-art/popular models for sentence similarity using sentence embeddings</h5>", unsafe_allow_html=True)
  st.markdown(f"<p style='font-size:14px; color: #4f4f4f; text-align: center'><i>Or compare your own model with state-of-the-art/popular models</p>", unsafe_allow_html=True)
  st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Use cases for sentence embeddings<br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;{use_case['1']}<br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;<a href=\'{use_case_url['2']}\' target='_blank'>{use_case['2']}</a><br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;<a href=\'{use_case_url['3']}\' target='_blank'>{use_case['3']}</a><br/><i>This app illustrates <b>'{curr_use_case}'</b> use case</i></div>", unsafe_allow_html=True)
  st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views:&nbsp;{get_views('init')}</div>", unsafe_allow_html=True)


  try:
      
      
      with st.form('twc_form'):

        step1_line = "Step 1. Upload text file(one sentence in a line) or choose an example text file below"
        if (app_mode ==  DOC_RETRIEVAL):
            step1_line += ". The first line is treated as the query"
        uploaded_file = st.file_uploader(step1_line, type=".txt")

        selected_file_index = st.selectbox(label=f'Example files ({len(example_file_names)})',  
                    options = list(dict.keys(example_file_names)), index=0,  key = "twc_file")
        st.write("")
        options_arr,markdown_str = construct_model_info_for_display(model_names)
        selection_label = 'Step 2. Select Model'
        selected_model = st.selectbox(label=selection_label,  
                    options = options_arr, index=0,  key = "twc_model")
        st.write("")
        custom_model_selection = st.text_input("Model not listed above? Type any Huggingface sentence similarity model name ", "",key="custom_model")
        hf_link_str = "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><a href='https://huggingface.co/models?pipeline_tag=sentence-similarity' target = '_blank'>List of Huggingface sentence similarity models</a><br/><br/><br/></div>"
        st.markdown(hf_link_str, unsafe_allow_html=True)
        if (app_mode == SEM_SIMILARITY):
            main_index = st.number_input('Step 3. Enter index of sentence in file to make it the main sentence',value=1,min_value = 1)
        else:
            main_index = 1
        st.write("")
        submit_button = st.form_submit_button('Run')

        
        input_status_area = st.empty()
        display_area = st.empty()
        if submit_button:
            start = time.time()
            if uploaded_file is not None:
                st.session_state["file_name"]  = uploaded_file.name
                sentences = StringIO(uploaded_file.getvalue().decode("utf-8")).read()
            else:
                st.session_state["file_name"]  = example_file_names[selected_file_index]["name"]
                sentences = open(example_file_names[selected_file_index]["name"]).read()
            sentences = sentences.split("\n")[:-1]
            if (len(sentences) < main_index):
                main_index = len(sentences)
                st.info("Selected sentence index is larger than number of sentences in file. Truncating to " + str(main_index)) 
            if (len(sentences) > MAX_INPUT):
                st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen")
                sentences = sentences[:MAX_INPUT]
            if (len(custom_model_selection) != 0):
                run_model = custom_model_selection
            else:
                run_model = selected_model
            st.session_state["model_name"] = run_model
            st.session_state["main_index"] = main_index
                  
            results = run_test(model_names,run_model,sentences,display_area,main_index - 1,(uploaded_file is not None),(len(custom_model_selection) != 0))
            display_area.empty()
            with display_area.container():
                device = 'GPU' if torch.cuda.is_available() else 'CPU'
                response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
                if (len(custom_model_selection) != 0):
                    st.info("Custom model overrides model selection in step 2 above. So please clear the custom model text box to choose models from step 2")
                display_results(sentences,main_index - 1,results,response_info,app_mode,run_model)
                #st.json(results)
      st.download_button(
         label="Download results as json",
         data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
         disabled = False if st.session_state["download_ready"] != None else True,
         file_name= (st.session_state["model_name"] + "_" +  str(st.session_state["main_index"]) + "_" + '_'.join(st.session_state["file_name"].split(".")[:-1]) + ".json").replace("/","_"),
         mime='text/json',
         key ="download" 
        )
      
      

  except Exception as e:
    st.error("Some error occurred during loading" + str(e))
    st.stop()  
	
  st.markdown(markdown_str, unsafe_allow_html=True)
  
 

if __name__ == "__main__":
   #print("comand line input:",len(sys.argv),str(sys.argv))
   #app_main(sys.argv[1],sys.argv[2],sys.argv[3])
   app_main("1","sim_app_examples.json","sim_app_models.json")
   #app_main("2","doc_app_examples.json","doc_app_models.json")