teaevo commited on
Commit
9d6743e
1 Parent(s): f65b03e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -2
app.py CHANGED
@@ -1,11 +1,44 @@
1
  import torch
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
5
- model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
 
 
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  def predict(input, history=[]):
 
 
 
 
9
  # tokenize the new input sentence
10
  new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
11
 
@@ -29,6 +62,8 @@ interface = gr.Interface(
29
  css=".footer {display:none !important}",
30
  inputs=["text", "state"],
31
  outputs=["chatbot", "state"],
 
 
32
  )
33
 
34
  if __name__ == '__main__':
 
1
  import torch
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ from transformers import TapexTokenizer, BartForConditionalGeneration
4
+ import pandas as pd
5
+ import torch
6
+
7
+ import numpy as np
8
+ import time
9
+ import os
10
+ #import pkg_resources
11
+
12
+ '''
13
+ # Get a list of installed packages and their versions
14
+ installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set}
15
 
16
+ # Print the list of packages
17
+ for package, version in installed_packages.items():
18
+ print(f"{package}=={version}")
19
+ '''
20
 
21
+ # Load the chatbot model
22
+ chatbot_model_name = "microsoft/DialoGPT-medium"
23
+ tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name)
24
+ model = AutoModelForCausalLM.from_pretrained(chatbot_model_name)
25
+
26
+ # Load the SQL Model
27
+ model_name = "microsoft/tapex-large-finetuned-wtq"
28
+ sql_tokenizer = TapexTokenizer.from_pretrained(model_name)
29
+ sql_model = BartForConditionalGeneration.from_pretrained(model_name)
30
+
31
+ data = {
32
+ "year": [1896, 1900, 1904, 2004, 2008, 2012],
33
+ "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
34
+ }
35
+ table = pd.DataFrame.from_dict(data)
36
 
37
  def predict(input, history=[]):
38
+
39
+ # Check if the user input is a question
40
+ is_question = "?" in user_message
41
+
42
  # tokenize the new input sentence
43
  new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
44
 
 
62
  css=".footer {display:none !important}",
63
  inputs=["text", "state"],
64
  outputs=["chatbot", "state"],
65
+ title="ST Chatbot",
66
+ description="Type your message in the box above, and the chatbot will respond.",
67
  )
68
 
69
  if __name__ == '__main__':