Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,44 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def predict(input, history=[]):
|
|
|
|
|
|
|
|
|
9 |
# tokenize the new input sentence
|
10 |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
11 |
|
@@ -29,6 +62,8 @@ interface = gr.Interface(
|
|
29 |
css=".footer {display:none !important}",
|
30 |
inputs=["text", "state"],
|
31 |
outputs=["chatbot", "state"],
|
|
|
|
|
32 |
)
|
33 |
|
34 |
if __name__ == '__main__':
|
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from transformers import TapexTokenizer, BartForConditionalGeneration
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import time
|
9 |
+
import os
|
10 |
+
#import pkg_resources
|
11 |
+
|
12 |
+
'''
|
13 |
+
# Get a list of installed packages and their versions
|
14 |
+
installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set}
|
15 |
|
16 |
+
# Print the list of packages
|
17 |
+
for package, version in installed_packages.items():
|
18 |
+
print(f"{package}=={version}")
|
19 |
+
'''
|
20 |
|
21 |
+
# Load the chatbot model
|
22 |
+
chatbot_model_name = "microsoft/DialoGPT-medium"
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name)
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(chatbot_model_name)
|
25 |
+
|
26 |
+
# Load the SQL Model
|
27 |
+
model_name = "microsoft/tapex-large-finetuned-wtq"
|
28 |
+
sql_tokenizer = TapexTokenizer.from_pretrained(model_name)
|
29 |
+
sql_model = BartForConditionalGeneration.from_pretrained(model_name)
|
30 |
+
|
31 |
+
data = {
|
32 |
+
"year": [1896, 1900, 1904, 2004, 2008, 2012],
|
33 |
+
"city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
|
34 |
+
}
|
35 |
+
table = pd.DataFrame.from_dict(data)
|
36 |
|
37 |
def predict(input, history=[]):
|
38 |
+
|
39 |
+
# Check if the user input is a question
|
40 |
+
is_question = "?" in user_message
|
41 |
+
|
42 |
# tokenize the new input sentence
|
43 |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
44 |
|
|
|
62 |
css=".footer {display:none !important}",
|
63 |
inputs=["text", "state"],
|
64 |
outputs=["chatbot", "state"],
|
65 |
+
title="ST Chatbot",
|
66 |
+
description="Type your message in the box above, and the chatbot will respond.",
|
67 |
)
|
68 |
|
69 |
if __name__ == '__main__':
|