audio-separator / separwator.py
theNeofr's picture
Create separwator.py
9645ea7 verified
raw
history blame
22.5 kB
import os
import torch
import logging
import yt_dlp
import spaces
import gradio as gr
from audio_separator.separator import Separator
device = "cuda" if torch.cuda.is_available() else "cpu"
use_autocast = device == "cuda"
#=========================#
# Roformer Models #
#=========================#
roformer_models = {
'BS-Roformer-Viperx-1297': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt',
'BS-Roformer-Viperx-1296': 'model_bs_roformer_ep_368_sdr_12.9628.ckpt',
'BS-Roformer-Viperx-1053': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt',
'Mel-Roformer-Viperx-1143': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt',
'BS-Roformer-De-Reverb': 'deverb_bs_roformer_8_384dim_10depth.ckpt',
'Mel-Roformer-Crowd-Aufr33-Viperx': 'mel_band_roformer_crowd_aufr33_viperx_sdr_8.7144.ckpt',
'Mel-Roformer-Denoise-Aufr33': 'denoise_mel_band_roformer_aufr33_sdr_27.9959.ckpt',
'Mel-Roformer-Denoise-Aufr33-Aggr' : 'denoise_mel_band_roformer_aufr33_aggr_sdr_27.9768.ckpt',
'Mel-Roformer-Karaoke-Aufr33-Viperx': 'mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt',
'MelBand Roformer Kim | Inst V1 by Unwa' : 'melband_roformer_inst_v1.ckpt',
'MelBand Roformer Kim | Inst V2 by Unwa' : 'melband_roformer_inst_v2.ckpt',
'MelBand Roformer Kim | InstVoc Duality V1 by Unwa' : 'melband_roformer_instvoc_duality_v1.ckpt',
'MelBand Roformer Kim | InstVoc Duality V2 by Unwa' : 'melband_roformer_instvox_duality_v2.ckpt',
}
#=========================#
# MDX23C Models #
#=========================#
mdx23c_models = [
'MDX23C_D1581.ckpt',
'MDX23C-8KFFT-InstVoc_HQ.ckpt',
'MDX23C-8KFFT-InstVoc_HQ_2.ckpt',
]
#=========================#
# MDXN-NET Models #
#=========================#
mdxnet_models = [
'UVR-MDX-NET-Inst_full_292.onnx',
'UVR-MDX-NET_Inst_187_beta.onnx',
'UVR-MDX-NET_Inst_82_beta.onnx',
'UVR-MDX-NET_Inst_90_beta.onnx',
'UVR-MDX-NET_Main_340.onnx',
'UVR-MDX-NET_Main_390.onnx',
'UVR-MDX-NET_Main_406.onnx',
'UVR-MDX-NET_Main_427.onnx',
'UVR-MDX-NET_Main_438.onnx',
'UVR-MDX-NET-Inst_HQ_1.onnx',
'UVR-MDX-NET-Inst_HQ_2.onnx',
'UVR-MDX-NET-Inst_HQ_3.onnx',
'UVR-MDX-NET-Inst_HQ_4.onnx',
'UVR-MDX-NET-Inst_HQ_5.onnx',
'UVR_MDXNET_Main.onnx',
'UVR-MDX-NET-Inst_Main.onnx',
'UVR_MDXNET_1_9703.onnx',
'UVR_MDXNET_2_9682.onnx',
'UVR_MDXNET_3_9662.onnx',
'UVR-MDX-NET-Inst_1.onnx',
'UVR-MDX-NET-Inst_2.onnx',
'UVR-MDX-NET-Inst_3.onnx',
'UVR_MDXNET_KARA.onnx',
'UVR_MDXNET_KARA_2.onnx',
'UVR_MDXNET_9482.onnx',
'UVR-MDX-NET-Voc_FT.onnx',
'Kim_Vocal_1.onnx',
'Kim_Vocal_2.onnx',
'Kim_Inst.onnx',
'Reverb_HQ_By_FoxJoy.onnx',
'UVR-MDX-NET_Crowd_HQ_1.onnx',
'kuielab_a_vocals.onnx',
'kuielab_a_other.onnx',
'kuielab_a_bass.onnx',
'kuielab_a_drums.onnx',
'kuielab_b_vocals.onnx',
'kuielab_b_other.onnx',
'kuielab_b_bass.onnx',
'kuielab_b_drums.onnx',
]
#========================#
# VR-ARCH Models #
#========================#
vrarch_models = [
'1_HP-UVR.pth',
'2_HP-UVR.pth',
'3_HP-Vocal-UVR.pth',
'4_HP-Vocal-UVR.pth',
'5_HP-Karaoke-UVR.pth',
'6_HP-Karaoke-UVR.pth',
'7_HP2-UVR.pth',
'8_HP2-UVR.pth',
'9_HP2-UVR.pth',
'10_SP-UVR-2B-32000-1.pth',
'11_SP-UVR-2B-32000-2.pth',
'12_SP-UVR-3B-44100.pth',
'13_SP-UVR-4B-44100-1.pth',
'14_SP-UVR-4B-44100-2.pth',
'15_SP-UVR-MID-44100-1.pth',
'16_SP-UVR-MID-44100-2.pth',
'17_HP-Wind_Inst-UVR.pth',
'UVR-De-Echo-Aggressive.pth',
'UVR-De-Echo-Normal.pth',
'UVR-DeEcho-DeReverb.pth',
'UVR-DeNoise-Lite.pth',
'UVR-DeNoise.pth',
'UVR-BVE-4B_SN-44100-1.pth',
'MGM_HIGHEND_v4.pth',
'MGM_LOWEND_A_v4.pth',
'MGM_LOWEND_B_v4.pth',
'MGM_MAIN_v4.pth',
]
#=======================#
# DEMUCS Models #
#=======================#
demucs_models = [
'htdemucs_ft.yaml',
'htdemucs_6s.yaml',
'htdemucs.yaml',
'hdemucs_mmi.yaml',
]
output_format = [
'wav',
'flac',
'mp3',
'ogg',
'opus',
'm4a',
'aiff',
'ac3'
]
found_files = []
logs = []
out_dir = "./outputs"
models_dir = "./models"
extensions = (".wav", ".flac", ".mp3", ".ogg", ".opus", ".m4a", ".aiff", ".ac3")
def download_audio(url, output_dir="ytdl"):
os.makedirs(output_dir, exist_ok=True)
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '32',
}],
'outtmpl': os.path.join(output_dir, '%(title)s.%(ext)s'),
'postprocessor_args': [
'-acodec', 'pcm_f32le'
],
}
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=False)
video_title = info['title']
ydl.download([url])
file_path = os.path.join(output_dir, f"{video_title}.wav")
if os.path.exists(file_path):
return os.path.abspath(file_path)
else:
raise Exception("Something went wrong")
except Exception as e:
raise Exception(f"Error extracting audio with yt-dlp: {str(e)}")
@spaces.GPU(duration=60)
def roformer_separator(audio, model_key, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
base_name = os.path.splitext(os.path.basename(audio))[0]
roformer_model = roformer_models[model_key]
try:
separator = Separator(
log_level=logging.WARNING,
model_file_dir=models_dir,
output_dir=out_dir,
output_format=out_format,
use_autocast=use_autocast,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
mdxc_params={
"segment_size": segment_size,
"override_model_segment_size": override_seg_size,
"batch_size": batch_size,
"overlap": overlap,
}
)
progress(0.2, desc="Loading model...")
separator.load_model(model_filename=roformer_model)
progress(0.7, desc="Separating audio...")
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
stems = [os.path.join(out_dir, file_name) for file_name in separation]
return stems[1], stems[0]
except Exception as e:
raise RuntimeError(f"Roformer separation failed: {e}") from e
@spaces.GPU(duration=60)
def mdxc_separator(audio, model, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
base_name = os.path.splitext(os.path.basename(audio))[0]
try:
separator = Separator(
log_level=logging.WARNING,
model_file_dir=models_dir,
output_dir=out_dir,
output_format=out_format,
use_autocast=use_autocast,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
mdxc_params={
"segment_size": segment_size,
"override_model_segment_size": override_seg_size,
"batch_size": batch_size,
"overlap": overlap,
}
)
progress(0.2, desc="Loading model...")
separator.load_model(model_filename=model)
progress(0.7, desc="Separating audio...")
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
stems = [os.path.join(out_dir, file_name) for file_name in separation]
return stems[1], stems[0]
except Exception as e:
raise RuntimeError(f"MDX23C separation failed: {e}") from e
@spaces.GPU(duration=60)
def mdxnet_separator(audio, model, out_format, hop_length, segment_size, denoise, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
base_name = os.path.splitext(os.path.basename(audio))[0]
try:
separator = Separator(
log_level=logging.WARNING,
model_file_dir=models_dir,
output_dir=out_dir,
output_format=out_format,
use_autocast=use_autocast,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
mdx_params={
"hop_length": hop_length,
"segment_size": segment_size,
"overlap": overlap,
"batch_size": batch_size,
"enable_denoise": denoise,
}
)
progress(0.2, desc="Loading model...")
separator.load_model(model_filename=model)
progress(0.7, desc="Separating audio...")
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
stems = [os.path.join(out_dir, file_name) for file_name in separation]
return stems[0], stems[1]
except Exception as e:
raise RuntimeError(f"MDX-NET separation failed: {e}") from e
@spaces.GPU(duration=60)
def vrarch_separator(audio, model, out_format, window_size, aggression, tta, post_process, post_process_threshold, high_end_process, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
base_name = os.path.splitext(os.path.basename(audio))[0]
try:
separator = Separator(
log_level=logging.WARNING,
model_file_dir=models_dir,
output_dir=out_dir,
output_format=out_format,
use_autocast=use_autocast,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
vr_params={
"batch_size": batch_size,
"window_size": window_size,
"aggression": aggression,
"enable_tta": tta,
"enable_post_process": post_process,
"post_process_threshold": post_process_threshold,
"high_end_process": high_end_process,
}
)
progress(0.2, desc="Loading model...")
separator.load_model(model_filename=model)
progress(0.7, desc="Separating audio...")
separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
stems = [os.path.join(out_dir, file_name) for file_name in separation]
return stems[0], stems[1]
except Exception as e:
raise RuntimeError(f"VR ARCH separation failed: {e}") from e
@spaces.GPU(duration=60)
def demucs_separator(audio, model, out_format, shifts, segment_size, segments_enabled, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
base_name = os.path.splitext(os.path.basename(audio))[0]
try:
separator = Separator(
log_level=logging.WARNING,
model_file_dir=models_dir,
output_dir=out_dir,
output_format=out_format,
use_autocast=use_autocast,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
demucs_params={
"batch_size": batch_size,
"segment_size": segment_size,
"shifts": shifts,
"overlap": overlap,
"segments_enabled": segments_enabled,
}
)
progress(0.2, desc="Loading model...")
separator.load_model(model_filename=model)
progress(0.7, desc="Separating audio...")
separation = separator.separate(audio)
stems = [os.path.join(out_dir, file_name) for file_name in separation]
if model == "htdemucs_6s.yaml":
return stems[0], stems[1], stems[2], stems[3], stems[4], stems[5]
else:
return stems[0], stems[1], stems[2], stems[3], None, None
except Exception as e:
raise RuntimeError(f"Demucs separation failed: {e}") from e
def update_stems(model):
if model == "htdemucs_6s.yaml":
return gr.update(visible=True)
else:
return gr.update(visible=False)
@spaces.GPU(duration=60)
def roformer_batch(path_input, path_output, model_key, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh):
found_files.clear()
logs.clear()
roformer_model = roformer_models[model_key]
for audio_files in os.listdir(path_input):
if audio_files.endswith(extensions):
found_files.append(audio_files)
total_files = len(found_files)
if total_files == 0:
logs.append("No valid audio files.")
yield "\n".join(logs)
else:
logs.append(f"{total_files} audio files found")
found_files.sort()
for audio_files in found_files:
file_path = os.path.join(path_input, audio_files)
base_name = os.path.splitext(os.path.basename(file_path))[0]
try:
separator = Separator(
log_level=logging.WARNING,
model_file_dir=models_dir,
output_dir=path_output,
output_format=out_format,
use_autocast=use_autocast,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
mdxc_params={
"segment_size": segment_size,
"override_model_segment_size": override_seg_size,
"batch_size": batch_size,
"overlap": overlap,
}
)
logs.append("Loading model...")
yield "\n".join(logs)
separator.load_model(model_filename=roformer_model)
logs.append(f"Separating file: {audio_files}")
yield "\n".join(logs)
separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
logs.append(f"File: {audio_files} separated!")
yield "\n".join(logs)
except Exception as e:
raise RuntimeError(f"Roformer batch separation failed: {e}") from e
@spaces.GPU(duration=60)
def mdx23c_batch(path_input, path_output, model, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh):
found_files.clear()
logs.clear()
for audio_files in os.listdir(path_input):
if audio_files.endswith(extensions):
found_files.append(audio_files)
total_files = len(found_files)
if total_files == 0:
logs.append("No valid audio files.")
yield "\n".join(logs)
else:
logs.append(f"{total_files} audio files found")
found_files.sort()
for audio_files in found_files:
file_path = os.path.join(path_input, audio_files)
base_name = os.path.splitext(os.path.basename(file_path))[0]
try:
separator = Separator(
log_level=logging.WARNING,
model_file_dir=models_dir,
output_dir=path_output,
output_format=out_format,
use_autocast=use_autocast,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
mdxc_params={
"segment_size": segment_size,
"override_model_segment_size": override_seg_size,
"batch_size": batch_size,
"overlap": overlap,
}
)
logs.append("Loading model...")
yield "\n".join(logs)
separator.load_model(model_filename=model)
logs.append(f"Separating file: {audio_files}")
yield "\n".join(logs)
separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
logs.append(f"File: {audio_files} separated!")
yield "\n".join(logs)
except Exception as e:
raise RuntimeError(f"Roformer batch separation failed: {e}") from e
@spaces.GPU(duration=60)
def mdxnet_batch(path_input, path_output, model, out_format, hop_length, segment_size, denoise, overlap, batch_size, norm_thresh, amp_thresh):
found_files.clear()
logs.clear()
for audio_files in os.listdir(path_input):
if audio_files.endswith(extensions):
found_files.append(audio_files)
total_files = len(found_files)
if total_files == 0:
logs.append("No valid audio files.")
yield "\n".join(logs)
else:
logs.append(f"{total_files} audio files found")
found_files.sort()
for audio_files in found_files:
file_path = os.path.join(path_input, audio_files)
base_name = os.path.splitext(os.path.basename(file_path))[0]
try:
separator = Separator(
log_level=logging.WARNING,
model_file_dir=models_dir,
output_dir=path_output,
output_format=out_format,
use_autocast=use_autocast,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
mdx_params={
"hop_length": hop_length,
"segment_size": segment_size,
"overlap": overlap,
"batch_size": batch_size,
"enable_denoise": denoise,
}
)
logs.append("Loading model...")
yield "\n".join(logs)
separator.load_model(model_filename=model)
logs.append(f"Separating file: {audio_files}")
yield "\n".join(logs)
separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
logs.append(f"File: {audio_files} separated!")
yield "\n".join(logs)
except Exception as e:
raise RuntimeError(f"Roformer batch separation failed: {e}") from e
@spaces.GPU(duration=60)
def vrarch_batch(path_input, path_output, model, out_format, window_size, aggression, tta, post_process, post_process_threshold, high_end_process, batch_size, norm_thresh, amp_thresh):
found_files.clear()
logs.clear()
for audio_files in os.listdir(path_input):
if audio_files.endswith(extensions):
found_files.append(audio_files)
total_files = len(found_files)
if total_files == 0:
logs.append("No valid audio files.")
yield "\n".join(logs)
else:
logs.append(f"{total_files} audio files found")
found_files.sort()
for audio_files in found_files:
file_path = os.path.join(path_input, audio_files)
base_name = os.path.splitext(os.path.basename(file_path))[0]
try:
separator = Separator(
log_level=logging.WARNING,
model_file_dir=models_dir,
output_dir=path_output,
output_format=out_format,
use_autocast=use_autocast,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
vr_params={
"batch_size": batch_size,
"window_size": window_size,
"aggression": aggression,
"enable_tta": tta,
"enable_post_process": post_process,
"post_process_threshold": post_process_threshold,
"high_end_process": high_end_process,
}
)
logs.append("Loading model...")
yield "\n".join(logs)
separator.load_model(model_filename=model)
logs.append(f"Separating file: {audio_files}")
yield "\n".join(logs)
separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
logs.append(f"File: {audio_files} separated!")
yield "\n".join(logs)
except Exception as e:
raise RuntimeError(f"Roformer batch separation failed: {e}") from e
@spaces.GPU(duration=60)
def demucs_batch(path_input, path_output, model, out_format, shifts, segment_size, segments_enabled, overlap, batch_size, norm_thresh, amp_thresh):
found_files.clear()
logs.clear()
for audio_files in os.listdir(path_input):
if audio_files.endswith(extensions):
found_files.append(audio_files)
total_files = len(found_files)
if total_files == 0:
logs.append("No valid audio files.")
yield "\n".join(logs)
else:
logs.append(f"{total_files} audio files found")
found_files.sort()
for audio_files in found_files:
file_path = os.path.join(path_input, audio_files)
try:
separator = Separator(
log_level=logging.WARNING,
model_file_dir=models_dir,
output_dir=path_output,
output_format=out_format,
use_autocast=use_autocast,
normalization_threshold=norm_thresh,
amplification_threshold=amp_thresh,
demucs_params={
"batch_size": batch_size,
"segment_size": segment_size,
"shifts": shifts,
"overlap": overlap,
"segments_enabled": segments_enabled,
}
)
logs.append("Loading model...")
yield "\n".join(logs)
separator.load_model(model_filename=model)
logs.append(f"Separating file: {audio_files}")
yield "\n".join(logs)
separator.separate(file_path)
logs.append(f"File: {audio_files} separated!")
yield "\n".join(logs)
except Exception as e:
raise RuntimeError(f"Roformer batch separation failed: {e}") from e