theNeofr commited on
Commit
9645ea7
·
verified ·
1 Parent(s): 0b8d4d4

Create separwator.py

Browse files
Files changed (1) hide show
  1. separwator.py +601 -0
separwator.py ADDED
@@ -0,0 +1,601 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import logging
4
+ import yt_dlp
5
+ import spaces
6
+ import gradio as gr
7
+ from audio_separator.separator import Separator
8
+
9
+
10
+
11
+ device = "cuda" if torch.cuda.is_available() else "cpu"
12
+ use_autocast = device == "cuda"
13
+
14
+ #=========================#
15
+ # Roformer Models #
16
+ #=========================#
17
+ roformer_models = {
18
+ 'BS-Roformer-Viperx-1297': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt',
19
+ 'BS-Roformer-Viperx-1296': 'model_bs_roformer_ep_368_sdr_12.9628.ckpt',
20
+ 'BS-Roformer-Viperx-1053': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt',
21
+ 'Mel-Roformer-Viperx-1143': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt',
22
+ 'BS-Roformer-De-Reverb': 'deverb_bs_roformer_8_384dim_10depth.ckpt',
23
+ 'Mel-Roformer-Crowd-Aufr33-Viperx': 'mel_band_roformer_crowd_aufr33_viperx_sdr_8.7144.ckpt',
24
+ 'Mel-Roformer-Denoise-Aufr33': 'denoise_mel_band_roformer_aufr33_sdr_27.9959.ckpt',
25
+ 'Mel-Roformer-Denoise-Aufr33-Aggr' : 'denoise_mel_band_roformer_aufr33_aggr_sdr_27.9768.ckpt',
26
+ 'Mel-Roformer-Karaoke-Aufr33-Viperx': 'mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt',
27
+ 'MelBand Roformer Kim | Inst V1 by Unwa' : 'melband_roformer_inst_v1.ckpt',
28
+ 'MelBand Roformer Kim | Inst V2 by Unwa' : 'melband_roformer_inst_v2.ckpt',
29
+ 'MelBand Roformer Kim | InstVoc Duality V1 by Unwa' : 'melband_roformer_instvoc_duality_v1.ckpt',
30
+ 'MelBand Roformer Kim | InstVoc Duality V2 by Unwa' : 'melband_roformer_instvox_duality_v2.ckpt',
31
+ }
32
+
33
+ #=========================#
34
+ # MDX23C Models #
35
+ #=========================#
36
+ mdx23c_models = [
37
+ 'MDX23C_D1581.ckpt',
38
+ 'MDX23C-8KFFT-InstVoc_HQ.ckpt',
39
+ 'MDX23C-8KFFT-InstVoc_HQ_2.ckpt',
40
+ ]
41
+
42
+ #=========================#
43
+ # MDXN-NET Models #
44
+ #=========================#
45
+ mdxnet_models = [
46
+ 'UVR-MDX-NET-Inst_full_292.onnx',
47
+ 'UVR-MDX-NET_Inst_187_beta.onnx',
48
+ 'UVR-MDX-NET_Inst_82_beta.onnx',
49
+ 'UVR-MDX-NET_Inst_90_beta.onnx',
50
+ 'UVR-MDX-NET_Main_340.onnx',
51
+ 'UVR-MDX-NET_Main_390.onnx',
52
+ 'UVR-MDX-NET_Main_406.onnx',
53
+ 'UVR-MDX-NET_Main_427.onnx',
54
+ 'UVR-MDX-NET_Main_438.onnx',
55
+ 'UVR-MDX-NET-Inst_HQ_1.onnx',
56
+ 'UVR-MDX-NET-Inst_HQ_2.onnx',
57
+ 'UVR-MDX-NET-Inst_HQ_3.onnx',
58
+ 'UVR-MDX-NET-Inst_HQ_4.onnx',
59
+ 'UVR-MDX-NET-Inst_HQ_5.onnx',
60
+ 'UVR_MDXNET_Main.onnx',
61
+ 'UVR-MDX-NET-Inst_Main.onnx',
62
+ 'UVR_MDXNET_1_9703.onnx',
63
+ 'UVR_MDXNET_2_9682.onnx',
64
+ 'UVR_MDXNET_3_9662.onnx',
65
+ 'UVR-MDX-NET-Inst_1.onnx',
66
+ 'UVR-MDX-NET-Inst_2.onnx',
67
+ 'UVR-MDX-NET-Inst_3.onnx',
68
+ 'UVR_MDXNET_KARA.onnx',
69
+ 'UVR_MDXNET_KARA_2.onnx',
70
+ 'UVR_MDXNET_9482.onnx',
71
+ 'UVR-MDX-NET-Voc_FT.onnx',
72
+ 'Kim_Vocal_1.onnx',
73
+ 'Kim_Vocal_2.onnx',
74
+ 'Kim_Inst.onnx',
75
+ 'Reverb_HQ_By_FoxJoy.onnx',
76
+ 'UVR-MDX-NET_Crowd_HQ_1.onnx',
77
+ 'kuielab_a_vocals.onnx',
78
+ 'kuielab_a_other.onnx',
79
+ 'kuielab_a_bass.onnx',
80
+ 'kuielab_a_drums.onnx',
81
+ 'kuielab_b_vocals.onnx',
82
+ 'kuielab_b_other.onnx',
83
+ 'kuielab_b_bass.onnx',
84
+ 'kuielab_b_drums.onnx',
85
+ ]
86
+
87
+ #========================#
88
+ # VR-ARCH Models #
89
+ #========================#
90
+ vrarch_models = [
91
+ '1_HP-UVR.pth',
92
+ '2_HP-UVR.pth',
93
+ '3_HP-Vocal-UVR.pth',
94
+ '4_HP-Vocal-UVR.pth',
95
+ '5_HP-Karaoke-UVR.pth',
96
+ '6_HP-Karaoke-UVR.pth',
97
+ '7_HP2-UVR.pth',
98
+ '8_HP2-UVR.pth',
99
+ '9_HP2-UVR.pth',
100
+ '10_SP-UVR-2B-32000-1.pth',
101
+ '11_SP-UVR-2B-32000-2.pth',
102
+ '12_SP-UVR-3B-44100.pth',
103
+ '13_SP-UVR-4B-44100-1.pth',
104
+ '14_SP-UVR-4B-44100-2.pth',
105
+ '15_SP-UVR-MID-44100-1.pth',
106
+ '16_SP-UVR-MID-44100-2.pth',
107
+ '17_HP-Wind_Inst-UVR.pth',
108
+ 'UVR-De-Echo-Aggressive.pth',
109
+ 'UVR-De-Echo-Normal.pth',
110
+ 'UVR-DeEcho-DeReverb.pth',
111
+ 'UVR-DeNoise-Lite.pth',
112
+ 'UVR-DeNoise.pth',
113
+ 'UVR-BVE-4B_SN-44100-1.pth',
114
+ 'MGM_HIGHEND_v4.pth',
115
+ 'MGM_LOWEND_A_v4.pth',
116
+ 'MGM_LOWEND_B_v4.pth',
117
+ 'MGM_MAIN_v4.pth',
118
+ ]
119
+
120
+ #=======================#
121
+ # DEMUCS Models #
122
+ #=======================#
123
+ demucs_models = [
124
+ 'htdemucs_ft.yaml',
125
+ 'htdemucs_6s.yaml',
126
+ 'htdemucs.yaml',
127
+ 'hdemucs_mmi.yaml',
128
+ ]
129
+
130
+ output_format = [
131
+ 'wav',
132
+ 'flac',
133
+ 'mp3',
134
+ 'ogg',
135
+ 'opus',
136
+ 'm4a',
137
+ 'aiff',
138
+ 'ac3'
139
+ ]
140
+
141
+ found_files = []
142
+ logs = []
143
+ out_dir = "./outputs"
144
+ models_dir = "./models"
145
+ extensions = (".wav", ".flac", ".mp3", ".ogg", ".opus", ".m4a", ".aiff", ".ac3")
146
+
147
+ def download_audio(url, output_dir="ytdl"):
148
+
149
+ os.makedirs(output_dir, exist_ok=True)
150
+
151
+ ydl_opts = {
152
+ 'format': 'bestaudio/best',
153
+ 'postprocessors': [{
154
+ 'key': 'FFmpegExtractAudio',
155
+ 'preferredcodec': 'wav',
156
+ 'preferredquality': '32',
157
+ }],
158
+ 'outtmpl': os.path.join(output_dir, '%(title)s.%(ext)s'),
159
+ 'postprocessor_args': [
160
+ '-acodec', 'pcm_f32le'
161
+ ],
162
+ }
163
+
164
+ try:
165
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
166
+ info = ydl.extract_info(url, download=False)
167
+ video_title = info['title']
168
+
169
+ ydl.download([url])
170
+
171
+ file_path = os.path.join(output_dir, f"{video_title}.wav")
172
+
173
+ if os.path.exists(file_path):
174
+ return os.path.abspath(file_path)
175
+ else:
176
+ raise Exception("Something went wrong")
177
+
178
+ except Exception as e:
179
+ raise Exception(f"Error extracting audio with yt-dlp: {str(e)}")
180
+
181
+ @spaces.GPU(duration=60)
182
+ def roformer_separator(audio, model_key, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
183
+ base_name = os.path.splitext(os.path.basename(audio))[0]
184
+ roformer_model = roformer_models[model_key]
185
+ try:
186
+ separator = Separator(
187
+ log_level=logging.WARNING,
188
+ model_file_dir=models_dir,
189
+ output_dir=out_dir,
190
+ output_format=out_format,
191
+ use_autocast=use_autocast,
192
+ normalization_threshold=norm_thresh,
193
+ amplification_threshold=amp_thresh,
194
+ mdxc_params={
195
+ "segment_size": segment_size,
196
+ "override_model_segment_size": override_seg_size,
197
+ "batch_size": batch_size,
198
+ "overlap": overlap,
199
+ }
200
+ )
201
+
202
+ progress(0.2, desc="Loading model...")
203
+ separator.load_model(model_filename=roformer_model)
204
+
205
+ progress(0.7, desc="Separating audio...")
206
+ separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
207
+
208
+ stems = [os.path.join(out_dir, file_name) for file_name in separation]
209
+ return stems[1], stems[0]
210
+ except Exception as e:
211
+ raise RuntimeError(f"Roformer separation failed: {e}") from e
212
+
213
+ @spaces.GPU(duration=60)
214
+ def mdxc_separator(audio, model, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
215
+ base_name = os.path.splitext(os.path.basename(audio))[0]
216
+ try:
217
+ separator = Separator(
218
+ log_level=logging.WARNING,
219
+ model_file_dir=models_dir,
220
+ output_dir=out_dir,
221
+ output_format=out_format,
222
+ use_autocast=use_autocast,
223
+ normalization_threshold=norm_thresh,
224
+ amplification_threshold=amp_thresh,
225
+ mdxc_params={
226
+ "segment_size": segment_size,
227
+ "override_model_segment_size": override_seg_size,
228
+ "batch_size": batch_size,
229
+ "overlap": overlap,
230
+ }
231
+ )
232
+
233
+ progress(0.2, desc="Loading model...")
234
+ separator.load_model(model_filename=model)
235
+
236
+ progress(0.7, desc="Separating audio...")
237
+ separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
238
+
239
+ stems = [os.path.join(out_dir, file_name) for file_name in separation]
240
+ return stems[1], stems[0]
241
+ except Exception as e:
242
+ raise RuntimeError(f"MDX23C separation failed: {e}") from e
243
+
244
+ @spaces.GPU(duration=60)
245
+ def mdxnet_separator(audio, model, out_format, hop_length, segment_size, denoise, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
246
+ base_name = os.path.splitext(os.path.basename(audio))[0]
247
+ try:
248
+ separator = Separator(
249
+ log_level=logging.WARNING,
250
+ model_file_dir=models_dir,
251
+ output_dir=out_dir,
252
+ output_format=out_format,
253
+ use_autocast=use_autocast,
254
+ normalization_threshold=norm_thresh,
255
+ amplification_threshold=amp_thresh,
256
+ mdx_params={
257
+ "hop_length": hop_length,
258
+ "segment_size": segment_size,
259
+ "overlap": overlap,
260
+ "batch_size": batch_size,
261
+ "enable_denoise": denoise,
262
+ }
263
+ )
264
+
265
+ progress(0.2, desc="Loading model...")
266
+ separator.load_model(model_filename=model)
267
+
268
+ progress(0.7, desc="Separating audio...")
269
+ separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
270
+
271
+ stems = [os.path.join(out_dir, file_name) for file_name in separation]
272
+ return stems[0], stems[1]
273
+ except Exception as e:
274
+ raise RuntimeError(f"MDX-NET separation failed: {e}") from e
275
+
276
+ @spaces.GPU(duration=60)
277
+ def vrarch_separator(audio, model, out_format, window_size, aggression, tta, post_process, post_process_threshold, high_end_process, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
278
+ base_name = os.path.splitext(os.path.basename(audio))[0]
279
+ try:
280
+ separator = Separator(
281
+ log_level=logging.WARNING,
282
+ model_file_dir=models_dir,
283
+ output_dir=out_dir,
284
+ output_format=out_format,
285
+ use_autocast=use_autocast,
286
+ normalization_threshold=norm_thresh,
287
+ amplification_threshold=amp_thresh,
288
+ vr_params={
289
+ "batch_size": batch_size,
290
+ "window_size": window_size,
291
+ "aggression": aggression,
292
+ "enable_tta": tta,
293
+ "enable_post_process": post_process,
294
+ "post_process_threshold": post_process_threshold,
295
+ "high_end_process": high_end_process,
296
+ }
297
+ )
298
+
299
+ progress(0.2, desc="Loading model...")
300
+ separator.load_model(model_filename=model)
301
+
302
+ progress(0.7, desc="Separating audio...")
303
+ separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
304
+
305
+ stems = [os.path.join(out_dir, file_name) for file_name in separation]
306
+ return stems[0], stems[1]
307
+ except Exception as e:
308
+ raise RuntimeError(f"VR ARCH separation failed: {e}") from e
309
+
310
+ @spaces.GPU(duration=60)
311
+ def demucs_separator(audio, model, out_format, shifts, segment_size, segments_enabled, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
312
+ base_name = os.path.splitext(os.path.basename(audio))[0]
313
+ try:
314
+ separator = Separator(
315
+ log_level=logging.WARNING,
316
+ model_file_dir=models_dir,
317
+ output_dir=out_dir,
318
+ output_format=out_format,
319
+ use_autocast=use_autocast,
320
+ normalization_threshold=norm_thresh,
321
+ amplification_threshold=amp_thresh,
322
+ demucs_params={
323
+ "batch_size": batch_size,
324
+ "segment_size": segment_size,
325
+ "shifts": shifts,
326
+ "overlap": overlap,
327
+ "segments_enabled": segments_enabled,
328
+ }
329
+ )
330
+
331
+ progress(0.2, desc="Loading model...")
332
+ separator.load_model(model_filename=model)
333
+
334
+ progress(0.7, desc="Separating audio...")
335
+ separation = separator.separate(audio)
336
+
337
+ stems = [os.path.join(out_dir, file_name) for file_name in separation]
338
+
339
+ if model == "htdemucs_6s.yaml":
340
+ return stems[0], stems[1], stems[2], stems[3], stems[4], stems[5]
341
+ else:
342
+ return stems[0], stems[1], stems[2], stems[3], None, None
343
+ except Exception as e:
344
+ raise RuntimeError(f"Demucs separation failed: {e}") from e
345
+
346
+ def update_stems(model):
347
+ if model == "htdemucs_6s.yaml":
348
+ return gr.update(visible=True)
349
+ else:
350
+ return gr.update(visible=False)
351
+
352
+ @spaces.GPU(duration=60)
353
+ def roformer_batch(path_input, path_output, model_key, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh):
354
+ found_files.clear()
355
+ logs.clear()
356
+ roformer_model = roformer_models[model_key]
357
+
358
+ for audio_files in os.listdir(path_input):
359
+ if audio_files.endswith(extensions):
360
+ found_files.append(audio_files)
361
+ total_files = len(found_files)
362
+
363
+ if total_files == 0:
364
+ logs.append("No valid audio files.")
365
+ yield "\n".join(logs)
366
+ else:
367
+ logs.append(f"{total_files} audio files found")
368
+ found_files.sort()
369
+
370
+ for audio_files in found_files:
371
+ file_path = os.path.join(path_input, audio_files)
372
+ base_name = os.path.splitext(os.path.basename(file_path))[0]
373
+ try:
374
+ separator = Separator(
375
+ log_level=logging.WARNING,
376
+ model_file_dir=models_dir,
377
+ output_dir=path_output,
378
+ output_format=out_format,
379
+ use_autocast=use_autocast,
380
+ normalization_threshold=norm_thresh,
381
+ amplification_threshold=amp_thresh,
382
+ mdxc_params={
383
+ "segment_size": segment_size,
384
+ "override_model_segment_size": override_seg_size,
385
+ "batch_size": batch_size,
386
+ "overlap": overlap,
387
+ }
388
+ )
389
+
390
+ logs.append("Loading model...")
391
+ yield "\n".join(logs)
392
+ separator.load_model(model_filename=roformer_model)
393
+
394
+ logs.append(f"Separating file: {audio_files}")
395
+ yield "\n".join(logs)
396
+ separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
397
+ logs.append(f"File: {audio_files} separated!")
398
+ yield "\n".join(logs)
399
+ except Exception as e:
400
+ raise RuntimeError(f"Roformer batch separation failed: {e}") from e
401
+
402
+ @spaces.GPU(duration=60)
403
+ def mdx23c_batch(path_input, path_output, model, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh):
404
+ found_files.clear()
405
+ logs.clear()
406
+
407
+ for audio_files in os.listdir(path_input):
408
+ if audio_files.endswith(extensions):
409
+ found_files.append(audio_files)
410
+ total_files = len(found_files)
411
+
412
+ if total_files == 0:
413
+ logs.append("No valid audio files.")
414
+ yield "\n".join(logs)
415
+ else:
416
+ logs.append(f"{total_files} audio files found")
417
+ found_files.sort()
418
+
419
+ for audio_files in found_files:
420
+ file_path = os.path.join(path_input, audio_files)
421
+ base_name = os.path.splitext(os.path.basename(file_path))[0]
422
+ try:
423
+ separator = Separator(
424
+ log_level=logging.WARNING,
425
+ model_file_dir=models_dir,
426
+ output_dir=path_output,
427
+ output_format=out_format,
428
+ use_autocast=use_autocast,
429
+ normalization_threshold=norm_thresh,
430
+ amplification_threshold=amp_thresh,
431
+ mdxc_params={
432
+ "segment_size": segment_size,
433
+ "override_model_segment_size": override_seg_size,
434
+ "batch_size": batch_size,
435
+ "overlap": overlap,
436
+ }
437
+ )
438
+
439
+ logs.append("Loading model...")
440
+ yield "\n".join(logs)
441
+ separator.load_model(model_filename=model)
442
+
443
+ logs.append(f"Separating file: {audio_files}")
444
+ yield "\n".join(logs)
445
+ separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
446
+ logs.append(f"File: {audio_files} separated!")
447
+ yield "\n".join(logs)
448
+ except Exception as e:
449
+ raise RuntimeError(f"Roformer batch separation failed: {e}") from e
450
+
451
+ @spaces.GPU(duration=60)
452
+ def mdxnet_batch(path_input, path_output, model, out_format, hop_length, segment_size, denoise, overlap, batch_size, norm_thresh, amp_thresh):
453
+ found_files.clear()
454
+ logs.clear()
455
+
456
+ for audio_files in os.listdir(path_input):
457
+ if audio_files.endswith(extensions):
458
+ found_files.append(audio_files)
459
+ total_files = len(found_files)
460
+
461
+ if total_files == 0:
462
+ logs.append("No valid audio files.")
463
+ yield "\n".join(logs)
464
+ else:
465
+ logs.append(f"{total_files} audio files found")
466
+ found_files.sort()
467
+
468
+ for audio_files in found_files:
469
+ file_path = os.path.join(path_input, audio_files)
470
+ base_name = os.path.splitext(os.path.basename(file_path))[0]
471
+ try:
472
+ separator = Separator(
473
+ log_level=logging.WARNING,
474
+ model_file_dir=models_dir,
475
+ output_dir=path_output,
476
+ output_format=out_format,
477
+ use_autocast=use_autocast,
478
+ normalization_threshold=norm_thresh,
479
+ amplification_threshold=amp_thresh,
480
+ mdx_params={
481
+ "hop_length": hop_length,
482
+ "segment_size": segment_size,
483
+ "overlap": overlap,
484
+ "batch_size": batch_size,
485
+ "enable_denoise": denoise,
486
+ }
487
+ )
488
+
489
+ logs.append("Loading model...")
490
+ yield "\n".join(logs)
491
+ separator.load_model(model_filename=model)
492
+
493
+ logs.append(f"Separating file: {audio_files}")
494
+ yield "\n".join(logs)
495
+ separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
496
+ logs.append(f"File: {audio_files} separated!")
497
+ yield "\n".join(logs)
498
+ except Exception as e:
499
+ raise RuntimeError(f"Roformer batch separation failed: {e}") from e
500
+
501
+ @spaces.GPU(duration=60)
502
+ def vrarch_batch(path_input, path_output, model, out_format, window_size, aggression, tta, post_process, post_process_threshold, high_end_process, batch_size, norm_thresh, amp_thresh):
503
+ found_files.clear()
504
+ logs.clear()
505
+
506
+ for audio_files in os.listdir(path_input):
507
+ if audio_files.endswith(extensions):
508
+ found_files.append(audio_files)
509
+ total_files = len(found_files)
510
+
511
+ if total_files == 0:
512
+ logs.append("No valid audio files.")
513
+ yield "\n".join(logs)
514
+ else:
515
+ logs.append(f"{total_files} audio files found")
516
+ found_files.sort()
517
+
518
+ for audio_files in found_files:
519
+ file_path = os.path.join(path_input, audio_files)
520
+ base_name = os.path.splitext(os.path.basename(file_path))[0]
521
+ try:
522
+ separator = Separator(
523
+ log_level=logging.WARNING,
524
+ model_file_dir=models_dir,
525
+ output_dir=path_output,
526
+ output_format=out_format,
527
+ use_autocast=use_autocast,
528
+ normalization_threshold=norm_thresh,
529
+ amplification_threshold=amp_thresh,
530
+ vr_params={
531
+ "batch_size": batch_size,
532
+ "window_size": window_size,
533
+ "aggression": aggression,
534
+ "enable_tta": tta,
535
+ "enable_post_process": post_process,
536
+ "post_process_threshold": post_process_threshold,
537
+ "high_end_process": high_end_process,
538
+ }
539
+ )
540
+
541
+ logs.append("Loading model...")
542
+ yield "\n".join(logs)
543
+ separator.load_model(model_filename=model)
544
+
545
+ logs.append(f"Separating file: {audio_files}")
546
+ yield "\n".join(logs)
547
+ separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
548
+ logs.append(f"File: {audio_files} separated!")
549
+ yield "\n".join(logs)
550
+ except Exception as e:
551
+ raise RuntimeError(f"Roformer batch separation failed: {e}") from e
552
+
553
+ @spaces.GPU(duration=60)
554
+ def demucs_batch(path_input, path_output, model, out_format, shifts, segment_size, segments_enabled, overlap, batch_size, norm_thresh, amp_thresh):
555
+ found_files.clear()
556
+ logs.clear()
557
+
558
+ for audio_files in os.listdir(path_input):
559
+ if audio_files.endswith(extensions):
560
+ found_files.append(audio_files)
561
+ total_files = len(found_files)
562
+
563
+ if total_files == 0:
564
+ logs.append("No valid audio files.")
565
+ yield "\n".join(logs)
566
+ else:
567
+ logs.append(f"{total_files} audio files found")
568
+ found_files.sort()
569
+
570
+ for audio_files in found_files:
571
+ file_path = os.path.join(path_input, audio_files)
572
+ try:
573
+ separator = Separator(
574
+ log_level=logging.WARNING,
575
+ model_file_dir=models_dir,
576
+ output_dir=path_output,
577
+ output_format=out_format,
578
+ use_autocast=use_autocast,
579
+ normalization_threshold=norm_thresh,
580
+ amplification_threshold=amp_thresh,
581
+ demucs_params={
582
+ "batch_size": batch_size,
583
+ "segment_size": segment_size,
584
+ "shifts": shifts,
585
+ "overlap": overlap,
586
+ "segments_enabled": segments_enabled,
587
+ }
588
+ )
589
+
590
+ logs.append("Loading model...")
591
+ yield "\n".join(logs)
592
+ separator.load_model(model_filename=model)
593
+
594
+ logs.append(f"Separating file: {audio_files}")
595
+ yield "\n".join(logs)
596
+ separator.separate(file_path)
597
+ logs.append(f"File: {audio_files} separated!")
598
+ yield "\n".join(logs)
599
+ except Exception as e:
600
+ raise RuntimeError(f"Roformer batch separation failed: {e}") from e
601
+