theNeofr commited on
Commit
0b8d4d4
·
verified ·
1 Parent(s): 1036aef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -590
app.py CHANGED
@@ -6,597 +6,7 @@ import spaces
6
  import gradio as gr
7
  from audio_separator.separator import Separator
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- use_autocast = device == "cuda"
11
 
12
- #=========================#
13
- # Roformer Models #
14
- #=========================#
15
- roformer_models = {
16
- 'BS-Roformer-Viperx-1297': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt',
17
- 'BS-Roformer-Viperx-1296': 'model_bs_roformer_ep_368_sdr_12.9628.ckpt',
18
- 'BS-Roformer-Viperx-1053': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt',
19
- 'Mel-Roformer-Viperx-1143': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt',
20
- 'BS-Roformer-De-Reverb': 'deverb_bs_roformer_8_384dim_10depth.ckpt',
21
- 'Mel-Roformer-Crowd-Aufr33-Viperx': 'mel_band_roformer_crowd_aufr33_viperx_sdr_8.7144.ckpt',
22
- 'Mel-Roformer-Denoise-Aufr33': 'denoise_mel_band_roformer_aufr33_sdr_27.9959.ckpt',
23
- 'Mel-Roformer-Denoise-Aufr33-Aggr' : 'denoise_mel_band_roformer_aufr33_aggr_sdr_27.9768.ckpt',
24
- 'Mel-Roformer-Karaoke-Aufr33-Viperx': 'mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt',
25
- 'MelBand Roformer Kim | Inst V1 by Unwa' : 'melband_roformer_inst_v1.ckpt',
26
- 'MelBand Roformer Kim | Inst V2 by Unwa' : 'melband_roformer_inst_v2.ckpt',
27
- 'MelBand Roformer Kim | InstVoc Duality V1 by Unwa' : 'melband_roformer_instvoc_duality_v1.ckpt',
28
- 'MelBand Roformer Kim | InstVoc Duality V2 by Unwa' : 'melband_roformer_instvox_duality_v2.ckpt',
29
- }
30
-
31
- #=========================#
32
- # MDX23C Models #
33
- #=========================#
34
- mdx23c_models = [
35
- 'MDX23C_D1581.ckpt',
36
- 'MDX23C-8KFFT-InstVoc_HQ.ckpt',
37
- 'MDX23C-8KFFT-InstVoc_HQ_2.ckpt',
38
- ]
39
-
40
- #=========================#
41
- # MDXN-NET Models #
42
- #=========================#
43
- mdxnet_models = [
44
- 'UVR-MDX-NET-Inst_full_292.onnx',
45
- 'UVR-MDX-NET_Inst_187_beta.onnx',
46
- 'UVR-MDX-NET_Inst_82_beta.onnx',
47
- 'UVR-MDX-NET_Inst_90_beta.onnx',
48
- 'UVR-MDX-NET_Main_340.onnx',
49
- 'UVR-MDX-NET_Main_390.onnx',
50
- 'UVR-MDX-NET_Main_406.onnx',
51
- 'UVR-MDX-NET_Main_427.onnx',
52
- 'UVR-MDX-NET_Main_438.onnx',
53
- 'UVR-MDX-NET-Inst_HQ_1.onnx',
54
- 'UVR-MDX-NET-Inst_HQ_2.onnx',
55
- 'UVR-MDX-NET-Inst_HQ_3.onnx',
56
- 'UVR-MDX-NET-Inst_HQ_4.onnx',
57
- 'UVR-MDX-NET-Inst_HQ_5.onnx',
58
- 'UVR_MDXNET_Main.onnx',
59
- 'UVR-MDX-NET-Inst_Main.onnx',
60
- 'UVR_MDXNET_1_9703.onnx',
61
- 'UVR_MDXNET_2_9682.onnx',
62
- 'UVR_MDXNET_3_9662.onnx',
63
- 'UVR-MDX-NET-Inst_1.onnx',
64
- 'UVR-MDX-NET-Inst_2.onnx',
65
- 'UVR-MDX-NET-Inst_3.onnx',
66
- 'UVR_MDXNET_KARA.onnx',
67
- 'UVR_MDXNET_KARA_2.onnx',
68
- 'UVR_MDXNET_9482.onnx',
69
- 'UVR-MDX-NET-Voc_FT.onnx',
70
- 'Kim_Vocal_1.onnx',
71
- 'Kim_Vocal_2.onnx',
72
- 'Kim_Inst.onnx',
73
- 'Reverb_HQ_By_FoxJoy.onnx',
74
- 'UVR-MDX-NET_Crowd_HQ_1.onnx',
75
- 'kuielab_a_vocals.onnx',
76
- 'kuielab_a_other.onnx',
77
- 'kuielab_a_bass.onnx',
78
- 'kuielab_a_drums.onnx',
79
- 'kuielab_b_vocals.onnx',
80
- 'kuielab_b_other.onnx',
81
- 'kuielab_b_bass.onnx',
82
- 'kuielab_b_drums.onnx',
83
- ]
84
-
85
- #========================#
86
- # VR-ARCH Models #
87
- #========================#
88
- vrarch_models = [
89
- '1_HP-UVR.pth',
90
- '2_HP-UVR.pth',
91
- '3_HP-Vocal-UVR.pth',
92
- '4_HP-Vocal-UVR.pth',
93
- '5_HP-Karaoke-UVR.pth',
94
- '6_HP-Karaoke-UVR.pth',
95
- '7_HP2-UVR.pth',
96
- '8_HP2-UVR.pth',
97
- '9_HP2-UVR.pth',
98
- '10_SP-UVR-2B-32000-1.pth',
99
- '11_SP-UVR-2B-32000-2.pth',
100
- '12_SP-UVR-3B-44100.pth',
101
- '13_SP-UVR-4B-44100-1.pth',
102
- '14_SP-UVR-4B-44100-2.pth',
103
- '15_SP-UVR-MID-44100-1.pth',
104
- '16_SP-UVR-MID-44100-2.pth',
105
- '17_HP-Wind_Inst-UVR.pth',
106
- 'UVR-De-Echo-Aggressive.pth',
107
- 'UVR-De-Echo-Normal.pth',
108
- 'UVR-DeEcho-DeReverb.pth',
109
- 'UVR-DeNoise-Lite.pth',
110
- 'UVR-DeNoise.pth',
111
- 'UVR-BVE-4B_SN-44100-1.pth',
112
- 'MGM_HIGHEND_v4.pth',
113
- 'MGM_LOWEND_A_v4.pth',
114
- 'MGM_LOWEND_B_v4.pth',
115
- 'MGM_MAIN_v4.pth',
116
- ]
117
-
118
- #=======================#
119
- # DEMUCS Models #
120
- #=======================#
121
- demucs_models = [
122
- 'htdemucs_ft.yaml',
123
- 'htdemucs_6s.yaml',
124
- 'htdemucs.yaml',
125
- 'hdemucs_mmi.yaml',
126
- ]
127
-
128
- output_format = [
129
- 'wav',
130
- 'flac',
131
- 'mp3',
132
- 'ogg',
133
- 'opus',
134
- 'm4a',
135
- 'aiff',
136
- 'ac3'
137
- ]
138
-
139
- found_files = []
140
- logs = []
141
- out_dir = "./outputs"
142
- models_dir = "./models"
143
- extensions = (".wav", ".flac", ".mp3", ".ogg", ".opus", ".m4a", ".aiff", ".ac3")
144
-
145
- def download_audio(url, output_dir="ytdl"):
146
-
147
- os.makedirs(output_dir, exist_ok=True)
148
-
149
- ydl_opts = {
150
- 'format': 'bestaudio/best',
151
- 'postprocessors': [{
152
- 'key': 'FFmpegExtractAudio',
153
- 'preferredcodec': 'wav',
154
- 'preferredquality': '32',
155
- }],
156
- 'outtmpl': os.path.join(output_dir, '%(title)s.%(ext)s'),
157
- 'postprocessor_args': [
158
- '-acodec', 'pcm_f32le'
159
- ],
160
- }
161
-
162
- try:
163
- with yt_dlp.YoutubeDL(ydl_opts) as ydl:
164
- info = ydl.extract_info(url, download=False)
165
- video_title = info['title']
166
-
167
- ydl.download([url])
168
-
169
- file_path = os.path.join(output_dir, f"{video_title}.wav")
170
-
171
- if os.path.exists(file_path):
172
- return os.path.abspath(file_path)
173
- else:
174
- raise Exception("Something went wrong")
175
-
176
- except Exception as e:
177
- raise Exception(f"Error extracting audio with yt-dlp: {str(e)}")
178
-
179
- @spaces.GPU(duration=60)
180
- def roformer_separator(audio, model_key, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
181
- base_name = os.path.splitext(os.path.basename(audio))[0]
182
- roformer_model = roformer_models[model_key]
183
- try:
184
- separator = Separator(
185
- log_level=logging.WARNING,
186
- model_file_dir=models_dir,
187
- output_dir=out_dir,
188
- output_format=out_format,
189
- use_autocast=use_autocast,
190
- normalization_threshold=norm_thresh,
191
- amplification_threshold=amp_thresh,
192
- mdxc_params={
193
- "segment_size": segment_size,
194
- "override_model_segment_size": override_seg_size,
195
- "batch_size": batch_size,
196
- "overlap": overlap,
197
- }
198
- )
199
-
200
- progress(0.2, desc="Loading model...")
201
- separator.load_model(model_filename=roformer_model)
202
-
203
- progress(0.7, desc="Separating audio...")
204
- separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
205
-
206
- stems = [os.path.join(out_dir, file_name) for file_name in separation]
207
- return stems[1], stems[0]
208
- except Exception as e:
209
- raise RuntimeError(f"Roformer separation failed: {e}") from e
210
-
211
- @spaces.GPU(duration=60)
212
- def mdxc_separator(audio, model, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
213
- base_name = os.path.splitext(os.path.basename(audio))[0]
214
- try:
215
- separator = Separator(
216
- log_level=logging.WARNING,
217
- model_file_dir=models_dir,
218
- output_dir=out_dir,
219
- output_format=out_format,
220
- use_autocast=use_autocast,
221
- normalization_threshold=norm_thresh,
222
- amplification_threshold=amp_thresh,
223
- mdxc_params={
224
- "segment_size": segment_size,
225
- "override_model_segment_size": override_seg_size,
226
- "batch_size": batch_size,
227
- "overlap": overlap,
228
- }
229
- )
230
-
231
- progress(0.2, desc="Loading model...")
232
- separator.load_model(model_filename=model)
233
-
234
- progress(0.7, desc="Separating audio...")
235
- separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
236
-
237
- stems = [os.path.join(out_dir, file_name) for file_name in separation]
238
- return stems[1], stems[0]
239
- except Exception as e:
240
- raise RuntimeError(f"MDX23C separation failed: {e}") from e
241
-
242
- @spaces.GPU(duration=60)
243
- def mdxnet_separator(audio, model, out_format, hop_length, segment_size, denoise, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
244
- base_name = os.path.splitext(os.path.basename(audio))[0]
245
- try:
246
- separator = Separator(
247
- log_level=logging.WARNING,
248
- model_file_dir=models_dir,
249
- output_dir=out_dir,
250
- output_format=out_format,
251
- use_autocast=use_autocast,
252
- normalization_threshold=norm_thresh,
253
- amplification_threshold=amp_thresh,
254
- mdx_params={
255
- "hop_length": hop_length,
256
- "segment_size": segment_size,
257
- "overlap": overlap,
258
- "batch_size": batch_size,
259
- "enable_denoise": denoise,
260
- }
261
- )
262
-
263
- progress(0.2, desc="Loading model...")
264
- separator.load_model(model_filename=model)
265
-
266
- progress(0.7, desc="Separating audio...")
267
- separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
268
-
269
- stems = [os.path.join(out_dir, file_name) for file_name in separation]
270
- return stems[0], stems[1]
271
- except Exception as e:
272
- raise RuntimeError(f"MDX-NET separation failed: {e}") from e
273
-
274
- @spaces.GPU(duration=60)
275
- def vrarch_separator(audio, model, out_format, window_size, aggression, tta, post_process, post_process_threshold, high_end_process, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
276
- base_name = os.path.splitext(os.path.basename(audio))[0]
277
- try:
278
- separator = Separator(
279
- log_level=logging.WARNING,
280
- model_file_dir=models_dir,
281
- output_dir=out_dir,
282
- output_format=out_format,
283
- use_autocast=use_autocast,
284
- normalization_threshold=norm_thresh,
285
- amplification_threshold=amp_thresh,
286
- vr_params={
287
- "batch_size": batch_size,
288
- "window_size": window_size,
289
- "aggression": aggression,
290
- "enable_tta": tta,
291
- "enable_post_process": post_process,
292
- "post_process_threshold": post_process_threshold,
293
- "high_end_process": high_end_process,
294
- }
295
- )
296
-
297
- progress(0.2, desc="Loading model...")
298
- separator.load_model(model_filename=model)
299
-
300
- progress(0.7, desc="Separating audio...")
301
- separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
302
-
303
- stems = [os.path.join(out_dir, file_name) for file_name in separation]
304
- return stems[0], stems[1]
305
- except Exception as e:
306
- raise RuntimeError(f"VR ARCH separation failed: {e}") from e
307
-
308
- @spaces.GPU(duration=60)
309
- def demucs_separator(audio, model, out_format, shifts, segment_size, segments_enabled, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)):
310
- base_name = os.path.splitext(os.path.basename(audio))[0]
311
- try:
312
- separator = Separator(
313
- log_level=logging.WARNING,
314
- model_file_dir=models_dir,
315
- output_dir=out_dir,
316
- output_format=out_format,
317
- use_autocast=use_autocast,
318
- normalization_threshold=norm_thresh,
319
- amplification_threshold=amp_thresh,
320
- demucs_params={
321
- "batch_size": batch_size,
322
- "segment_size": segment_size,
323
- "shifts": shifts,
324
- "overlap": overlap,
325
- "segments_enabled": segments_enabled,
326
- }
327
- )
328
-
329
- progress(0.2, desc="Loading model...")
330
- separator.load_model(model_filename=model)
331
-
332
- progress(0.7, desc="Separating audio...")
333
- separation = separator.separate(audio)
334
-
335
- stems = [os.path.join(out_dir, file_name) for file_name in separation]
336
-
337
- if model == "htdemucs_6s.yaml":
338
- return stems[0], stems[1], stems[2], stems[3], stems[4], stems[5]
339
- else:
340
- return stems[0], stems[1], stems[2], stems[3], None, None
341
- except Exception as e:
342
- raise RuntimeError(f"Demucs separation failed: {e}") from e
343
-
344
- def update_stems(model):
345
- if model == "htdemucs_6s.yaml":
346
- return gr.update(visible=True)
347
- else:
348
- return gr.update(visible=False)
349
-
350
- @spaces.GPU(duration=60)
351
- def roformer_batch(path_input, path_output, model_key, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh):
352
- found_files.clear()
353
- logs.clear()
354
- roformer_model = roformer_models[model_key]
355
-
356
- for audio_files in os.listdir(path_input):
357
- if audio_files.endswith(extensions):
358
- found_files.append(audio_files)
359
- total_files = len(found_files)
360
-
361
- if total_files == 0:
362
- logs.append("No valid audio files.")
363
- yield "\n".join(logs)
364
- else:
365
- logs.append(f"{total_files} audio files found")
366
- found_files.sort()
367
-
368
- for audio_files in found_files:
369
- file_path = os.path.join(path_input, audio_files)
370
- base_name = os.path.splitext(os.path.basename(file_path))[0]
371
- try:
372
- separator = Separator(
373
- log_level=logging.WARNING,
374
- model_file_dir=models_dir,
375
- output_dir=path_output,
376
- output_format=out_format,
377
- use_autocast=use_autocast,
378
- normalization_threshold=norm_thresh,
379
- amplification_threshold=amp_thresh,
380
- mdxc_params={
381
- "segment_size": segment_size,
382
- "override_model_segment_size": override_seg_size,
383
- "batch_size": batch_size,
384
- "overlap": overlap,
385
- }
386
- )
387
-
388
- logs.append("Loading model...")
389
- yield "\n".join(logs)
390
- separator.load_model(model_filename=roformer_model)
391
-
392
- logs.append(f"Separating file: {audio_files}")
393
- yield "\n".join(logs)
394
- separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
395
- logs.append(f"File: {audio_files} separated!")
396
- yield "\n".join(logs)
397
- except Exception as e:
398
- raise RuntimeError(f"Roformer batch separation failed: {e}") from e
399
-
400
- @spaces.GPU(duration=60)
401
- def mdx23c_batch(path_input, path_output, model, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh):
402
- found_files.clear()
403
- logs.clear()
404
-
405
- for audio_files in os.listdir(path_input):
406
- if audio_files.endswith(extensions):
407
- found_files.append(audio_files)
408
- total_files = len(found_files)
409
-
410
- if total_files == 0:
411
- logs.append("No valid audio files.")
412
- yield "\n".join(logs)
413
- else:
414
- logs.append(f"{total_files} audio files found")
415
- found_files.sort()
416
-
417
- for audio_files in found_files:
418
- file_path = os.path.join(path_input, audio_files)
419
- base_name = os.path.splitext(os.path.basename(file_path))[0]
420
- try:
421
- separator = Separator(
422
- log_level=logging.WARNING,
423
- model_file_dir=models_dir,
424
- output_dir=path_output,
425
- output_format=out_format,
426
- use_autocast=use_autocast,
427
- normalization_threshold=norm_thresh,
428
- amplification_threshold=amp_thresh,
429
- mdxc_params={
430
- "segment_size": segment_size,
431
- "override_model_segment_size": override_seg_size,
432
- "batch_size": batch_size,
433
- "overlap": overlap,
434
- }
435
- )
436
-
437
- logs.append("Loading model...")
438
- yield "\n".join(logs)
439
- separator.load_model(model_filename=model)
440
-
441
- logs.append(f"Separating file: {audio_files}")
442
- yield "\n".join(logs)
443
- separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
444
- logs.append(f"File: {audio_files} separated!")
445
- yield "\n".join(logs)
446
- except Exception as e:
447
- raise RuntimeError(f"Roformer batch separation failed: {e}") from e
448
-
449
- @spaces.GPU(duration=60)
450
- def mdxnet_batch(path_input, path_output, model, out_format, hop_length, segment_size, denoise, overlap, batch_size, norm_thresh, amp_thresh):
451
- found_files.clear()
452
- logs.clear()
453
-
454
- for audio_files in os.listdir(path_input):
455
- if audio_files.endswith(extensions):
456
- found_files.append(audio_files)
457
- total_files = len(found_files)
458
-
459
- if total_files == 0:
460
- logs.append("No valid audio files.")
461
- yield "\n".join(logs)
462
- else:
463
- logs.append(f"{total_files} audio files found")
464
- found_files.sort()
465
-
466
- for audio_files in found_files:
467
- file_path = os.path.join(path_input, audio_files)
468
- base_name = os.path.splitext(os.path.basename(file_path))[0]
469
- try:
470
- separator = Separator(
471
- log_level=logging.WARNING,
472
- model_file_dir=models_dir,
473
- output_dir=path_output,
474
- output_format=out_format,
475
- use_autocast=use_autocast,
476
- normalization_threshold=norm_thresh,
477
- amplification_threshold=amp_thresh,
478
- mdx_params={
479
- "hop_length": hop_length,
480
- "segment_size": segment_size,
481
- "overlap": overlap,
482
- "batch_size": batch_size,
483
- "enable_denoise": denoise,
484
- }
485
- )
486
-
487
- logs.append("Loading model...")
488
- yield "\n".join(logs)
489
- separator.load_model(model_filename=model)
490
-
491
- logs.append(f"Separating file: {audio_files}")
492
- yield "\n".join(logs)
493
- separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
494
- logs.append(f"File: {audio_files} separated!")
495
- yield "\n".join(logs)
496
- except Exception as e:
497
- raise RuntimeError(f"Roformer batch separation failed: {e}") from e
498
-
499
- @spaces.GPU(duration=60)
500
- def vrarch_batch(path_input, path_output, model, out_format, window_size, aggression, tta, post_process, post_process_threshold, high_end_process, batch_size, norm_thresh, amp_thresh):
501
- found_files.clear()
502
- logs.clear()
503
-
504
- for audio_files in os.listdir(path_input):
505
- if audio_files.endswith(extensions):
506
- found_files.append(audio_files)
507
- total_files = len(found_files)
508
-
509
- if total_files == 0:
510
- logs.append("No valid audio files.")
511
- yield "\n".join(logs)
512
- else:
513
- logs.append(f"{total_files} audio files found")
514
- found_files.sort()
515
-
516
- for audio_files in found_files:
517
- file_path = os.path.join(path_input, audio_files)
518
- base_name = os.path.splitext(os.path.basename(file_path))[0]
519
- try:
520
- separator = Separator(
521
- log_level=logging.WARNING,
522
- model_file_dir=models_dir,
523
- output_dir=path_output,
524
- output_format=out_format,
525
- use_autocast=use_autocast,
526
- normalization_threshold=norm_thresh,
527
- amplification_threshold=amp_thresh,
528
- vr_params={
529
- "batch_size": batch_size,
530
- "window_size": window_size,
531
- "aggression": aggression,
532
- "enable_tta": tta,
533
- "enable_post_process": post_process,
534
- "post_process_threshold": post_process_threshold,
535
- "high_end_process": high_end_process,
536
- }
537
- )
538
-
539
- logs.append("Loading model...")
540
- yield "\n".join(logs)
541
- separator.load_model(model_filename=model)
542
-
543
- logs.append(f"Separating file: {audio_files}")
544
- yield "\n".join(logs)
545
- separator.separate(file_path, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
546
- logs.append(f"File: {audio_files} separated!")
547
- yield "\n".join(logs)
548
- except Exception as e:
549
- raise RuntimeError(f"Roformer batch separation failed: {e}") from e
550
-
551
- @spaces.GPU(duration=60)
552
- def demucs_batch(path_input, path_output, model, out_format, shifts, segment_size, segments_enabled, overlap, batch_size, norm_thresh, amp_thresh):
553
- found_files.clear()
554
- logs.clear()
555
-
556
- for audio_files in os.listdir(path_input):
557
- if audio_files.endswith(extensions):
558
- found_files.append(audio_files)
559
- total_files = len(found_files)
560
-
561
- if total_files == 0:
562
- logs.append("No valid audio files.")
563
- yield "\n".join(logs)
564
- else:
565
- logs.append(f"{total_files} audio files found")
566
- found_files.sort()
567
-
568
- for audio_files in found_files:
569
- file_path = os.path.join(path_input, audio_files)
570
- try:
571
- separator = Separator(
572
- log_level=logging.WARNING,
573
- model_file_dir=models_dir,
574
- output_dir=path_output,
575
- output_format=out_format,
576
- use_autocast=use_autocast,
577
- normalization_threshold=norm_thresh,
578
- amplification_threshold=amp_thresh,
579
- demucs_params={
580
- "batch_size": batch_size,
581
- "segment_size": segment_size,
582
- "shifts": shifts,
583
- "overlap": overlap,
584
- "segments_enabled": segments_enabled,
585
- }
586
- )
587
-
588
- logs.append("Loading model...")
589
- yield "\n".join(logs)
590
- separator.load_model(model_filename=model)
591
-
592
- logs.append(f"Separating file: {audio_files}")
593
- yield "\n".join(logs)
594
- separator.separate(file_path)
595
- logs.append(f"File: {audio_files} separated!")
596
- yield "\n".join(logs)
597
- except Exception as e:
598
- raise RuntimeError(f"Roformer batch separation failed: {e}") from e
599
-
600
  with gr.Blocks(theme ="hev832/applio", title = "🎵 Audio Separator UI 🎵") as app:
601
  with gr.Row():
602
  gr.Markdown("<h1> 🎵 Audio Separator UI 🎵 </h1>")
 
6
  import gradio as gr
7
  from audio_separator.separator import Separator
8
 
 
 
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  with gr.Blocks(theme ="hev832/applio", title = "🎵 Audio Separator UI 🎵") as app:
11
  with gr.Row():
12
  gr.Markdown("<h1> 🎵 Audio Separator UI 🎵 </h1>")