File size: 4,021 Bytes
38de050 abb68f3 377a9ca abb68f3 377a9ca abb68f3 619cb37 377a9ca 619cb37 e4c0dca 9a037ec e4c0dca 619cb37 abb68f3 1b49c5f 619cb37 abb68f3 619cb37 78c9aa5 abb68f3 2ad9ac2 8c0d77d 8919890 abb68f3 66095f7 80c3495 377a9ca 6bcfe46 2ad9ac2 377a9ca abb68f3 5a41ba5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nielsr/segformer-b0-finetuned-segments-sidewalk",
from_pt=True
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nielsr/segformer-b0-finetuned-segments-sidewalk",
from_pt=True
)
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[204, 87, 90],
[112, 185, 212],
[45, 189, 106],
[234, 123, 67],
[78, 56, 123],
[210, 32, 89],
[90, 180, 56],
[155, 102, 200],
[33, 147, 176],
[255, 183, 76],
[67, 123, 89],
[190, 60, 45],
[134, 112, 200],
[56, 45, 189],
[200, 56, 123],
[87, 92, 204],
[120, 56, 123],
[45, 78, 123],
[156, 200, 56],
[32, 90, 210],
[56, 123, 67],
[180, 56, 123],
[123, 67, 45],
[45, 134, 200],
[67, 56, 123],
[78, 123, 67],
[32, 210, 90],
[45, 56, 189],
[123, 56, 123],
[56, 156, 200],
[189, 56, 45],
[112, 200, 56],
[56, 123, 45],
[200, 32, 90],
[123, 45, 78],
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(
logits, input_img.size[::-1]
) # We reverse the shape of `image` because `image.size` returns width and height.
seg = tf.math.argmax(logits, axis=-1)[0]
color_seg = np.zeros(
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
) # height, width, 3
for label, color in enumerate(colormap):
color_seg[seg.numpy() == label, :] = color
# Show image + mask
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
demo = gr.Interface(fn=sepia,
title="Machine_learning_Sidewalk_Segmentation️",
description="Sidewalk Image Segmentation 201912103 이서정",
inputs=gr.Image(),
outputs=['plot'],
article="경기대학교 머신러닝 과제입니다.",
examples=["Sidewalk_1.jpg", "Sidewalk_2.jpg", "Sidewalk_3.jpg"],
allow_flagging='never',
css=".gradio-container {background-color: #EEEEEE}",
theme="gradio/monochrome",
live=True)
demo.launch() |