|
import time |
|
from threading import Thread |
|
|
|
import gradio as gr |
|
|
|
import spaces |
|
import torch |
|
from PIL import Image |
|
from transformers import ( |
|
AutoProcessor, |
|
MllamaForConditionalGeneration, |
|
TextIteratorStreamer, |
|
) |
|
|
|
|
|
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
CHECKPOINT = "toandev/Viet-Receipt-Llama-3.2-11B-Vision-Instruct" |
|
|
|
|
|
model = MllamaForConditionalGeneration.from_pretrained( |
|
CHECKPOINT, torch_dtype=torch.bfloat16 |
|
).to(DEVICE) |
|
processor = AutoProcessor.from_pretrained(CHECKPOINT) |
|
|
|
|
|
def process_chat_history(history): |
|
messages = [] |
|
images = [] |
|
|
|
for i, msg in enumerate(history): |
|
if isinstance(msg[0], tuple): |
|
messages.extend( |
|
[ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": history[i + 1][0]}, |
|
{"type": "image"}, |
|
], |
|
}, |
|
{ |
|
"role": "assistant", |
|
"content": [{"type": "text", "text": history[i + 1][1]}], |
|
}, |
|
] |
|
) |
|
images.append(Image.open(msg[0][0]).convert("RGB")) |
|
elif isinstance(history[i - 1], tuple) and isinstance(msg[0], str): |
|
continue |
|
elif isinstance(history[i - 1][0], str) and isinstance(msg[0], str): |
|
messages.extend( |
|
[ |
|
{"role": "user", "content": [{"type": "text", "text": msg[0]}]}, |
|
{ |
|
"role": "assistant", |
|
"content": [{"type": "text", "text": msg[1]}], |
|
}, |
|
] |
|
) |
|
|
|
return messages, images |
|
|
|
|
|
@spaces.GPU |
|
def bot_streaming(message, history, max_new_tokens=250): |
|
text = message["text"] |
|
messages, images = process_chat_history(history) |
|
|
|
|
|
if len(message["files"]) == 1: |
|
image = ( |
|
Image.open(message["files"][0]) |
|
if isinstance(message["files"][0], str) |
|
else Image.open(message["files"][0]["path"]) |
|
).convert("RGB") |
|
images.append(image) |
|
messages.append( |
|
{ |
|
"role": "user", |
|
"content": [{"type": "text", "text": text}, {"type": "image"}], |
|
} |
|
) |
|
else: |
|
messages.append({"role": "user", "content": [{"type": "text", "text": text}]}) |
|
|
|
|
|
texts = processor.apply_chat_template(messages, add_generation_prompt=True) |
|
inputs = ( |
|
processor(text=texts, images=images, return_tensors="pt") |
|
if images |
|
else processor(text=texts, return_tensors="pt") |
|
).to(DEVICE) |
|
|
|
|
|
streamer = TextIteratorStreamer( |
|
processor, skip_special_tokens=True, skip_prompt=True |
|
) |
|
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) |
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
buffer = "" |
|
for new_text in streamer: |
|
buffer += new_text |
|
time.sleep(0.01) |
|
yield buffer |
|
|
|
return "Hello" |
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=bot_streaming, |
|
textbox=gr.MultimodalTextbox(), |
|
additional_inputs=[ |
|
gr.Slider( |
|
minimum=10, |
|
maximum=500, |
|
value=250, |
|
step=10, |
|
label="Maximum number of new tokens to generate", |
|
) |
|
], |
|
examples=[ |
|
[ |
|
{ |
|
"text": "Hóa đơn được in tại nhà hàng nào?", |
|
"files": ["./examples/01.jpg"], |
|
}, |
|
200, |
|
], |
|
[ |
|
{ |
|
"text": "Mô tả thông tin hóa đơn một cách chi tiết.", |
|
"files": ["./examples/02.jpg"], |
|
}, |
|
500, |
|
], |
|
], |
|
cache_examples=False, |
|
stop_btn="Stop", |
|
fill_height=True, |
|
multimodal=True, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(debug=True) |
|
|