lama-law / app.py
torVik's picture
Update app.py
2fd430b verified
#!/usr/bin/env python
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# Debugging: Start script
print("Starting script...")
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN is None:
print("Warning: HF_TOKEN is not set!")
PASSWORD = os.getenv("APP_PASSWORD", "mysecretpassword") # Set your desired password here or via environment variable
DESCRIPTION = "# FT of Lama"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
print("Warning: No GPU available. This model cannot run on CPU.")
else:
print("GPU is available!")
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
# Debugging: GPU check passed, loading model
if torch.cuda.is_available():
model_id = "BGLAW/bggpt-Instruct-bglawinsv1UNS_merged"
try:
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
print("Model loaded successfully!")
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
print("Tokenizer loaded successfully!")
except Exception as e:
print(f"Error loading model or tokenizer: {e}")
raise e # Re-raise the error after logging it
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
print(f"Received message: {message}")
print(f"Chat history: {chat_history}")
conversation = []
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
try:
print("Tokenizing input...")
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
print(f"Input tokenized: {input_ids.shape}")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
print("Trimmed input tokens due to length.")
input_ids = input_ids.to(model.device)
print("Input moved to the model's device.")
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
print("Starting generation...")
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
print("Thread started for model generation.")
outputs = []
for text in streamer:
outputs.append(text)
print(f"Generated text so far: {''.join(outputs)}")
yield "".join(outputs)
except Exception as e:
print(f"Error during generation: {e}")
raise e # Re-raise the error after logging it
def password_auth(password):
if password == PASSWORD:
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True, value="Incorrect password. Try again.")
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
# Debugging: Interface setup
print("Setting up interface...")
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
# Create login components
with gr.Row(visible=True) as login_area:
password_input = gr.Textbox(
label="Enter Password", type="password", placeholder="Password", show_label=True
)
login_btn = gr.Button("Submit")
incorrect_password_msg = gr.Markdown("Incorrect password. Try again.", visible=False)
# Main chat interface
with gr.Column(visible=False) as chat_area:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
chat_interface.render()
# Bind login button to check password
login_btn.click(password_auth, inputs=password_input, outputs=[chat_area, incorrect_password_msg])
# Debugging: Starting queue and launching the demo
print("Launching demo...")
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)
# WORKING
# #!/usr/bin/env python
# import os
# from threading import Thread
# from typing import Iterator
# import gradio as gr
# import spaces
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# # Debugging: Start script
# print("Starting script...")
# HF_TOKEN = os.environ.get("HF_TOKEN")
# if HF_TOKEN is None:
# print("Warning: HF_TOKEN is not set!")
# DESCRIPTION = "# Mistral-7B v0.2"
# if not torch.cuda.is_available():
# DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
# print("Warning: No GPU available. This model cannot run on CPU.")
# else:
# print("GPU is available!")
# MAX_MAX_NEW_TOKENS = 2048
# DEFAULT_MAX_NEW_TOKENS = 1024
# MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
# # Debugging: GPU check passed, loading model
# if torch.cuda.is_available():
# model_id = "mistralai/Mistral-7B-Instruct-v0.2"
# try:
# print("Loading model...")
# model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
# print("Model loaded successfully!")
# print("Loading tokenizer...")
# tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
# print("Tokenizer loaded successfully!")
# except Exception as e:
# print(f"Error loading model or tokenizer: {e}")
# raise e # Re-raise the error after logging it
# @spaces.GPU
# def generate(
# message: str,
# chat_history: list[tuple[str, str]],
# max_new_tokens: int = 1024,
# temperature: float = 0.6,
# top_p: float = 0.9,
# top_k: int = 50,
# repetition_penalty: float = 1.2,
# ) -> Iterator[str]:
# print(f"Received message: {message}")
# print(f"Chat history: {chat_history}")
# conversation = []
# for user, assistant in chat_history:
# conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
# conversation.append({"role": "user", "content": message})
# try:
# print("Tokenizing input...")
# input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
# print(f"Input tokenized: {input_ids.shape}")
# if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
# input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
# gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
# print("Trimmed input tokens due to length.")
# input_ids = input_ids.to(model.device)
# print("Input moved to the model's device.")
# streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
# generate_kwargs = dict(
# {"input_ids": input_ids},
# streamer=streamer,
# max_new_tokens=max_new_tokens,
# do_sample=True,
# top_p=top_p,
# top_k=top_k,
# temperature=temperature,
# num_beams=1,
# repetition_penalty=repetition_penalty,
# )
# print("Starting generation...")
# t = Thread(target=model.generate, kwargs=generate_kwargs)
# t.start()
# print("Thread started for model generation.")
# outputs = []
# for text in streamer:
# outputs.append(text)
# print(f"Generated text so far: {''.join(outputs)}")
# yield "".join(outputs)
# except Exception as e:
# print(f"Error during generation: {e}")
# raise e # Re-raise the error after logging it
# chat_interface = gr.ChatInterface(
# fn=generate,
# additional_inputs=[
# gr.Slider(
# label="Max new tokens",
# minimum=1,
# maximum=MAX_MAX_NEW_TOKENS,
# step=1,
# value=DEFAULT_MAX_NEW_TOKENS,
# ),
# gr.Slider(
# label="Temperature",
# minimum=0.1,
# maximum=4.0,
# step=0.1,
# value=0.6,
# ),
# gr.Slider(
# label="Top-p (nucleus sampling)",
# minimum=0.05,
# maximum=1.0,
# step=0.05,
# value=0.9,
# ),
# gr.Slider(
# label="Top-k",
# minimum=1,
# maximum=1000,
# step=1,
# value=50,
# ),
# gr.Slider(
# label="Repetition penalty",
# minimum=1.0,
# maximum=2.0,
# step=0.05,
# value=1.2,
# ),
# ],
# stop_btn=None,
# examples=[
# ["Hello there! How are you doing?"],
# ["Can you explain briefly to me what is the Python programming language?"],
# ["Explain the plot of Cinderella in a sentence."],
# ["How many hours does it take a man to eat a Helicopter?"],
# ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
# ],
# )
# # Debugging: Interface setup
# print("Setting up interface...")
# with gr.Blocks(css="style.css") as demo:
# gr.Markdown(DESCRIPTION)
# gr.DuplicateButton(
# value="Duplicate Space for private use",
# elem_id="duplicate-button",
# visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
# )
# chat_interface.render()
# # Debugging: Starting queue and launching the demo
# print("Launching demo...")
# if __name__ == "__main__":
# demo.queue(max_size=20).launch(share=True)