LineArt-Removar / app.py
tori29umai's picture
Update
245de5e
raw
history blame
8.32 kB
import gradio as gr
from PIL import Image, ImageFilter, ImageOps
import cv2
import numpy as np
import os
from collections import defaultdict
from skimage.color import deltaE_ciede2000, rgb2lab
import zipfile
def DoG_filter(image, kernel_size=0, sigma=1.0, k_sigma=2.0, gamma=1.5):
g1 = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma)
g2 = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma * k_sigma)
return g1 - gamma * g2
def XDoG_filter(image, kernel_size=0, sigma=1.4, k_sigma=1.6, epsilon=0, phi=10, gamma=0.98):
epsilon /= 255
dog = DoG_filter(image, kernel_size, sigma, k_sigma, gamma)
dog /= dog.max()
e = 1 + np.tanh(phi * (dog - epsilon))
e[e >= 1] = 1
return (e * 255).astype('uint8')
def binarize_image(image):
_, binarized = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
return binarized
def process_XDoG(image_path):
kernel_size=0
sigma=1.4
k_sigma=1.6
epsilon=0
phi=10
gamma=0.98
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
xdog_image = XDoG_filter(image, kernel_size, sigma, k_sigma, epsilon, phi, gamma)
binarized_image = binarize_image(xdog_image)
final_image = Image.fromarray(binarized_image)
return final_image
def replace_color(image, color_1, blur_radius=2):
data = np.array(image)
original_shape = data.shape
channels = original_shape[2] if len(original_shape) > 2 else 1 # チャンネル数を璺θͺ
data = data.reshape(-1, channels)
color_1 = np.array(color_1)
matches = np.all(data[:, :3] == color_1, axis=1)
nochange_count = 0
mask = np.zeros(data.shape[0], dtype=bool)
while np.any(matches):
new_matches = np.zeros_like(matches)
match_num = np.sum(matches)
for i in range(len(data)): # Removed tqdm
if matches[i]:
x, y = divmod(i, original_shape[1])
neighbors = [
(x, y-1), (x, y+1), (x-1, y), (x+1, y)
]
valid_neighbors = []
for nx, ny in neighbors:
if 0 <= nx < original_shape[0] and 0 <= ny < original_shape[1]:
ni = nx * original_shape[1] + ny
if not np.all(data[ni, :3] == color_1, axis=0):
valid_neighbors.append(data[ni, :3])
if valid_neighbors:
new_color = np.mean(valid_neighbors, axis=0).astype(np.uint8)
data[i, :3] = new_color
data[i, 3] = 255
mask[i] = True
else:
new_matches[i] = True
matches = new_matches
if match_num == np.sum(matches):
nochange_count += 1
if nochange_count > 5:
break
data = data.reshape(original_shape)
mask = mask.reshape(original_shape[:2])
result_image = Image.fromarray(data, 'RGBA')
blurred_image = result_image.filter(ImageFilter.GaussianBlur(radius=blur_radius))
blurred_data = np.array(blurred_image)
np.copyto(data, blurred_data, where=mask[..., None])
return Image.fromarray(data, 'RGBA')
def generate_distant_colors(consolidated_colors, distance_threshold):
consolidated_lab = [rgb2lab(np.array([color], dtype=np.float32) / 255.0).reshape(3) for color, _ in consolidated_colors]
max_attempts = 10000
for _ in range(max_attempts):
random_rgb = np.random.randint(0, 256, size=3)
random_lab = rgb2lab(np.array([random_rgb], dtype=np.float32) / 255.0).reshape(3)
if all(deltaE_ciede2000(base_color_lab, random_lab) > distance_threshold for base_color_lab in consolidated_lab):
return tuple(random_rgb)
return (128, 128, 128)
def consolidate_colors(major_colors, threshold):
colors_lab = [rgb2lab(np.array([[color]], dtype=np.float32)/255.0).reshape(3) for color, _ in major_colors]
i = 0
while i < len(colors_lab):
j = i + 1
while j < len(colors_lab):
if deltaE_ciede2000(colors_lab[i], colors_lab[j]) < threshold:
if major_colors[i][1] >= major_colors[j][1]:
major_colors[i] = (major_colors[i][0], major_colors[i][1] + major_colors[j][1])
major_colors.pop(j)
colors_lab.pop(j)
else:
major_colors[j] = (major_colors[j][0], major_colors[j][1] + major_colors[i][1])
major_colors.pop(i)
colors_lab.pop(i)
continue
j += 1
i += 1
return major_colors
def get_major_colors(image, threshold_percentage=0.01):
if image.mode != 'RGB':
image = image.convert('RGB')
color_count = defaultdict(int)
for pixel in image.getdata():
color_count[pixel] += 1
total_pixels = image.width * image.height
major_colors = [(color, count) for color, count in color_count.items() if (count / total_pixels) >= threshold_percentage]
return major_colors
def line_color(image, mask, new_color):
data = np.array(image)
data[mask, :3] = new_color
return Image.fromarray(data)
def process_image(image, lineart):
if image.mode != 'RGBA':
image = image.convert('RGBA')
lineart = lineart.point(lambda x: 0 if x < 200 else 255)
lineart = ImageOps.invert(lineart)
kernel = np.ones((3, 3), np.uint8)
lineart = cv2.dilate(np.array(lineart), kernel, iterations=1)
lineart = Image.fromarray(lineart)
mask = np.array(lineart) == 255
major_colors = get_major_colors(image, threshold_percentage=0.05)
major_colors = consolidate_colors(major_colors, 10)
new_color_1 = generate_distant_colors(major_colors, 100)
filled_image = line_color(image, mask, new_color_1)
replace_color_image = replace_color(filled_image, new_color_1, 2).convert('RGB')
return replace_color_image
def zip_files(zip_files, zip_path):
with zipfile.ZipFile(zip_path, 'w') as zipf:
for file_path in zip_files:
zipf.write(file_path, arcname=os.path.basename(file_path))
class webui:
def __init__(self):
self.demo = gr.Blocks()
def main(self, image_path):
image = Image.open(image_path)
if image.mode != 'RGBA':
image = image.convert('RGBA')
#ζ‹‘εΌ΅ε­γ‚’ε–γ‚Šι™€γ„γŸγƒ•γ‚‘γ‚€γƒ«εγ‚’ε–εΎ—
image_name = os.path.splitext(image_path)[0]
alpha = image.getchannel('A') if image.mode == 'RGBA' else None
image.save(image_path)
image = Image.open(image_path).convert('RGBA')
rgb_image = image.convert('RGB')
lineart = process_XDoG(image_path).convert('L')
replace_color_image = process_image(rgb_image, lineart).convert('RGBA')
if alpha:
replace_color_image.putalpha(alpha)
replace_color_image_path = f"{image_name}_noline.png"
replace_color_image.save(replace_color_image_path)
lineart_image = lineart.convert('RGBA')
lineart_alpha = 255 - np.array(lineart)
lineart_image.putalpha(Image.fromarray(lineart_alpha))
lineart_image_path = f"{image_name}_lineart.png"
lineart_image.save(lineart_image_path)
zip_files_list = [replace_color_image_path, lineart_image_path]
zip_path = f"{image_name}.zip"
zip_files(zip_files_list, zip_path)
outputs = [replace_color_image, lineart_image]
return outputs, zip_path
def launch(self, share):
with self.demo:
with gr.Row():
with gr.Column():
input_image = gr.Image(type='filepath', image_mode="RGBA", label="Original Image")
submit = gr.Button(value="Start")
with gr.Row():
with gr.Column():
with gr.Tab("output"):
output_0 = gr.Gallery(format="png")
output_file = gr.File()
submit.click(
self.main,
inputs=[input_image],
outputs=[output_0, output_file]
)
self.demo.queue()
self.demo.launch(share=share)
if __name__ == "__main__":
ui = webui()
ui.launch(share=True)