File size: 5,568 Bytes
744af63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import gradio as gr
import torch
import transformers

from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments
from llava.train.dataset import tokenizer_image_token


# load model
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
model_path = 'toshi456/llava-jp-1.3b-v1.1'

model = LlavaGpt2ForCausalLM.from_pretrained(
    model_path, 
    low_cpu_mem_usage=True,
    use_safetensors=True,
    torch_dtype=torch_dtype,
    device_map=device,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
    model_path,
    model_max_length=1024,
    padding_side="right",
    use_fast=False,
)
model.eval()
conv_mode = "v1"


@torch.inference_mode()
def inference_fn(
    image, 
    prompt, 
    max_len, 
    temperature,
    top_p, 
):
    # prepare inputs
    # image pre-process
    image_size = model.get_model().vision_tower.image_processor.size["height"]
    if model.get_model().vision_tower.scales is not None:
        image_size = model.get_model().vision_tower.image_processor.size["height"] * len(model.get_model().vision_tower.scales)

    if device == "cuda":
        image_tensor = model.get_model().vision_tower.image_processor(
            image, 
            return_tensors='pt', 
            size={"height": image_size, "width": image_size}
        )['pixel_values'].half().cuda().to(torch_dtype)
    else:
        image_tensor = model.get_model().vision_tower.image_processor(
            image, 
            return_tensors='pt', 
            size={"height": image_size, "width": image_size}
        )['pixel_values'].to(torch_dtype)

    # create prompt
    inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
    conv = conv_templates[conv_mode].copy()
    conv.append_message(conv.roles[0], inp)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()

    input_ids = tokenizer_image_token(
        prompt, 
        tokenizer, 
        IMAGE_TOKEN_INDEX, 
        return_tensors='pt'
    ).unsqueeze(0)
    if device == "cuda":
        input_ids = input_ids.to(device)

    input_ids = input_ids[:, :-1] # </sep>がinputの最後に入るので削除する

    # generate
    output_ids = model.generate(
            inputs=input_ids,
            images=image_tensor,
            do_sample= temperature != 0.0,
            temperature=temperature,
            top_p=top_p,
            max_new_tokens=max_len,
            use_cache=True,
        )
    output_ids = [token_id for token_id in output_ids.tolist()[0] if token_id != IMAGE_TOKEN_INDEX]
    output = tokenizer.decode(output_ids, skip_special_tokens=True)
    
    target = "システム: "
    idx = output.find(target)
    output = output[idx+len(target):]

    return output

with gr.Blocks() as demo:
    gr.Markdown(f"# LLaVA-JP Demo")

    with gr.Row():
        with gr.Column():
            # input_instruction = gr.TextArea(label="instruction", value=DEFAULT_INSTRUCTION)
            input_image = gr.Image(type="pil", label="image")
            prompt = gr.Textbox(label="prompt (optional)", value="")
            with gr.Accordion(label="Configs", open=False):
                max_len = gr.Slider(
                    minimum=10,
                    maximum=256,
                    value=128,
                    step=5,
                    interactive=True,
                    label="Max New Tokens",
                )
                
                temperature = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.1,
                    step=0.1,
                    interactive=True,
                    label="Temperature",
                )
            
                top_p = gr.Slider(
                    minimum=0.5,
                    maximum=1.0,
                    value=0.9,
                    step=0.1,
                    interactive=True,
                    label="Top p",
                )
        
            # button
            input_button = gr.Button(value="Submit")
        with gr.Column():
            output = gr.Textbox(label="Output")
    
    inputs = [input_image, prompt, max_len, temperature, top_p]
    input_button.click(inference_fn, inputs=inputs, outputs=[output])
    prompt.submit(inference_fn, inputs=inputs, outputs=[output])
    img2txt_examples = gr.Examples(examples=[
        [
            "./imgs/sample1.jpg",
            "猫は何をしていますか?",
            32,
            0.0,
            0.9,
        ],
        [
            "./imgs/sample2.jpg",
            "この自動販売機にはどのブランドの飲料が含まれていますか?",
            256,
            0.0,
            0.9,
        ],
        [
            "./imgs/sample3.jpg",
            "この料理の作り方を教えてください。",
            256,
            0.0,
            0.9,
        ],
        [
            "./imgs/sample4.jpg",
            "このコンピュータの名前を教えてください。",
            256,
            0.0,
            0.9,
        ],
        [
            "./imgs/sample5.jpg",
            "これらを使って作ることができる料理を教えてください。",
            256,
            0.0,
            0.9,
        ],
    ], inputs=inputs)
    
    
if __name__ == "__main__":
    demo.queue().launch(share=True)