README / README.md
robot-bengali-2's picture
Update after the training run has finished
fe6ddb2 unverified
---
title: README
emoji: πŸ‘
colorFrom: pink
colorTo: indigo
sdk: static
pinned: false
---
<!-- The classes below are necessary for correct rendering -->
<div class="lg:col-span-3">
<p class="mb-2">
This organization is a part of the NeurIPS 2021 demonstration <u><a href="https://training-transformers-together.github.io/">"Training Transformers Together"</a></u>.
</p>
<p class="mb-2">
In this demo, we've trained a model similar to <u><a target="_blank" href="https://openai.com/blog/dall-e/">OpenAI DALL-E</a></u> β€”
a Transformer "language model" that generates images from text descriptions.
Training happened collaboratively β€” volunteers from all over the Internet contributed to the training using hardware available to them.
We used <u><a target="_blank" href="https://laion.ai/laion-400-open-dataset/">LAION-400M</a></u>,
the world's largest openly available image-text-pair dataset with 400 million samples. Our model was based on
the <u><a target="_blank" href="https://github.com/lucidrains/DALLE-pytorch">dalle‑pytorch</a></u> implementation
by <u><a target="_blank" href="https://github.com/lucidrains">Phil Wang</a></u> with a few tweaks to make it communication-efficient.
</p>
<p class="mb-2">
See details about how it works on <u><a target="_blank" href="https://training-transformers-together.github.io/">our website</a></u>.
</p>
<p class="mb-2">
This organization gathers people participating in the collaborative training and provides links to the related materials:
</p>
<ul class="mb-2">
<li>πŸ‘‰ <u><a target="_blank" href="https://training-transformers-together.github.io/InferenceResults.html">Inference results</a></u></li></li>
<li>πŸ‘‰ <u><a target="_blank" href="https://huggingface.co/training-transformers-together/dalle-demo-v1">Model weights</a></u> (the latest checkpoint)</li></li>
<li>πŸ‘‰ <u><a target="_blank" href="https://colab.research.google.com/drive/1sXHqy5hKVEQyFX-H2Ai7KzLij-7M_xCB?usp=sharing">Colab notebook for running inference</a> (updated on Apr 5)</u>
<li>πŸ‘‰ <u><a target="_blank" href="https://github.com/learning-at-home/dalle-hivemind">Code</a></u></li>
<li>πŸ‘‰ <u><a target="_blank" href="https://huggingface.co/datasets/laion/laion_100m_vqgan_f8">Dataset</a></u></li>
</ul>
<p class="mb-2">
The materials below were available during the training run itself:
</p>
<ul class="mb-2">
<li>πŸ‘‰ Starter kits for <u><a target="_blank" href="https://colab.research.google.com/drive/1BqTWcfsvNQwQqqCRKMKp1_jvQ5L1BhCY?usp=sharing">Google Colab</a></u> and <u><a target="_blank" href="https://www.kaggle.com/yhn112/training-transformers-together/">Kaggle</a></u> (easy way to join the training)</li>
<li>πŸ‘‰ <u><a target="_blank" href="https://huggingface.co/spaces/training-transformers-together/Dashboard">Dashboard</a></u> (the current training state: loss, number of peers, etc.)</li>
<li>πŸ‘‰ Weights & Biases plots for <u><a target="_blank" href="https://wandb.ai/learning-at-home/dalle-hivemind/runs/3l7q56ht">aux peers</a></u> (aggregating the metrics) and actual <u><a target="_blank" href="https://wandb.ai/learning-at-home/dalle-hivemind-trainers">trainers</a></u> (contributing with their GPUs)</li>
</ul>
<p class="mb-2">
Feel free to reach us on <u><a target="_blank" href="https://discord.gg/uGugx9zYvN">Discord</a></u> if you have any questions πŸ™‚
</p>
</div>