Spaces:
Sleeping
Sleeping
File size: 1,429 Bytes
9301987 c1b4f26 9301987 c1b4f26 9301987 c1b4f26 9301987 c1b4f26 9301987 c1b4f26 9301987 c1b4f26 9301987 c1b4f26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import glob
import streamlit as st
from streamlit_image_select import image_select
#Trick to not init function multitime
# if "model" not in st.session_state:
# print("INIT MODEL")
# from src.model import Model
# st.session_state.model = Model()
# print("DONE INIT MODEL")
st.set_page_config(page_title="VQA", layout="wide")
hide_menu_style = """
<style>
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_menu_style, unsafe_allow_html= True)
mapper = {
"images\\000000000008.jpg": "A",
"images\\000000000012.jpg": "B",
"images\\000000000016.jpg": "C",
"images\\000000000019.jpg": "D",
"images\\000000000181.jpg": "E"
}
image = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png", "webp", ])
example = image_select("Examples", glob.glob("images/*.jpg"))
if image:
bytes_data = image.getvalue()
with open("test.png", "wb") as f:
f.write(bytes_data)
f.close()
st.session_state.image = "test.png"
st.session_state.question = ""
else:
st.session_state.question = mapper[example]
st.session_state.image = example
if 'image' in st.session_state:
st.image(st.session_state.image)
question = st.text_input("Question: ", value=st.session_state.question)
# if question:
# answer = st.session_state.model.inference(st.session_state.image, question)
# st.write(f"Answer: {answer}")
|