File size: 1,525 Bytes
d49f601
f308f42
e544d42
f165e87
17018a6
f165e87
 
17018a6
3ee1657
f308f42
 
 
 
 
250be57
3ee1657
250be57
 
c22d12b
f165e87
 
e544d42
 
f165e87
e544d42
 
 
06c9fd6
e544d42
 
 
f308f42
 
e88841b
 
e602433
c22d12b
e544d42
4db03af
e544d42
e88841b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig,BitsAndBytesConfig

import torch

# Check if a GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Just for GPU 
bnb_config = BitsAndBytesConfig(
        load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype="float16", bnb_4bit_use_double_quant=True
    )


tokenizer = AutoTokenizer.from_pretrained("truongghieu/deci-finetuned", trust_remote_code=True)
# Load model in this way if use GPU
model = AutoModelForCausalLM.from_pretrained("truongghieu/deci-finetuned", trust_remote_code=True, quantization_config=bnb_config)
model.to(device)
# model = AutoModelForCausalLM.from_pretrained("truongghieu/deci-finetuned", trust_remote_code=True)
# Move the model to the GPU if available

generation_config = GenerationConfig(
    penalty_alpha=0.6,
    do_sample=True,
    top_k=5,
    temperature=0.5,
    repetition_penalty=1.2,
    max_new_tokens=200,
    pad_token_id=tokenizer.eos_token_id
)



# Define a function that takes a text input and generates a text output
def generate_text(text):
    input_text = f'###Human: \"{text}\"'
    input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
    output_ids = model.generate(input_ids, generation_config=generation_config)
    output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
    return output_text

iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
iface.launch()