|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .swin_transformer import SwinTransformer |
|
from .newcrf_layers import NewCRF |
|
from .uper_crf_head import PSP |
|
from .depth_update import * |
|
|
|
|
|
|
|
class NewCRFDepth(nn.Module): |
|
""" |
|
Depth network based on neural window FC-CRFs architecture. |
|
""" |
|
def __init__(self, version=None, inv_depth=False, pretrained=None, |
|
frozen_stages=-1, min_depth=0.1, max_depth=100.0, **kwargs): |
|
super().__init__() |
|
|
|
self.inv_depth = inv_depth |
|
self.with_auxiliary_head = False |
|
self.with_neck = False |
|
|
|
norm_cfg = dict(type='BN', requires_grad=True) |
|
|
|
window_size = int(version[-2:]) |
|
|
|
if version[:-2] == 'base': |
|
embed_dim = 128 |
|
depths = [2, 2, 18, 2] |
|
num_heads = [4, 8, 16, 32] |
|
in_channels = [128, 256, 512, 1024] |
|
self.update = BasicUpdateBlockDepth(hidden_dim=128, context_dim=128) |
|
elif version[:-2] == 'large': |
|
embed_dim = 192 |
|
depths = [2, 2, 18, 2] |
|
num_heads = [6, 12, 24, 48] |
|
in_channels = [192, 384, 768, 1536] |
|
self.update = BasicUpdateBlockDepth(hidden_dim=128, context_dim=192) |
|
elif version[:-2] == 'tiny': |
|
embed_dim = 96 |
|
depths = [2, 2, 6, 2] |
|
num_heads = [3, 6, 12, 24] |
|
in_channels = [96, 192, 384, 768] |
|
self.update = BasicUpdateBlockDepth(hidden_dim=128, context_dim=96) |
|
|
|
backbone_cfg = dict( |
|
embed_dim=embed_dim, |
|
depths=depths, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
ape=False, |
|
drop_path_rate=0.3, |
|
patch_norm=True, |
|
use_checkpoint=False, |
|
frozen_stages=frozen_stages |
|
) |
|
|
|
embed_dim = 512 |
|
decoder_cfg = dict( |
|
in_channels=in_channels, |
|
in_index=[0, 1, 2, 3], |
|
pool_scales=(1, 2, 3, 6), |
|
channels=embed_dim, |
|
dropout_ratio=0.0, |
|
num_classes=32, |
|
norm_cfg=norm_cfg, |
|
align_corners=False |
|
) |
|
|
|
self.backbone = SwinTransformer(**backbone_cfg) |
|
v_dim = decoder_cfg['num_classes']*4 |
|
win = 7 |
|
crf_dims = [128, 256, 512, 1024] |
|
v_dims = [64, 128, 256, embed_dim] |
|
self.crf3 = NewCRF(input_dim=in_channels[3], embed_dim=crf_dims[3], window_size=win, v_dim=v_dims[3], num_heads=32) |
|
self.crf2 = NewCRF(input_dim=in_channels[2], embed_dim=crf_dims[2], window_size=win, v_dim=v_dims[2], num_heads=16) |
|
self.crf1 = NewCRF(input_dim=in_channels[1], embed_dim=crf_dims[1], window_size=win, v_dim=v_dims[1], num_heads=8) |
|
|
|
self.decoder = PSP(**decoder_cfg) |
|
self.disp_head1 = DispHead(input_dim=crf_dims[0]) |
|
|
|
self.up_mode = 'bilinear' |
|
if self.up_mode == 'mask': |
|
self.mask_head = nn.Sequential( |
|
nn.Conv2d(v_dims[0], 64, 3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(64, 16*9, 1, padding=0)) |
|
|
|
self.min_depth = min_depth |
|
self.max_depth = max_depth |
|
self.depth_num = 16 |
|
self.hidden_dim = 128 |
|
self.project = Projection(v_dims[0], self.hidden_dim) |
|
|
|
self.init_weights(pretrained=pretrained) |
|
|
|
def init_weights(self, pretrained=None): |
|
"""Initialize the weights in backbone and heads. |
|
|
|
Args: |
|
pretrained (str, optional): Path to pre-trained weights. |
|
Defaults to None. |
|
""" |
|
print(f'== Load encoder backbone from: {pretrained}') |
|
self.backbone.init_weights(pretrained=pretrained) |
|
self.decoder.init_weights() |
|
if self.with_auxiliary_head: |
|
if isinstance(self.auxiliary_head, nn.ModuleList): |
|
for aux_head in self.auxiliary_head: |
|
aux_head.init_weights() |
|
else: |
|
self.auxiliary_head.init_weights() |
|
|
|
def upsample_mask(self, disp, mask): |
|
""" Upsample disp [H/4, W/4, 1] -> [H, W, 1] using convex combination """ |
|
N, C, H, W = disp.shape |
|
mask = mask.view(N, 1, 9, 4, 4, H, W) |
|
mask = torch.softmax(mask, dim=2) |
|
|
|
up_disp = F.unfold(disp, kernel_size=3, padding=1) |
|
up_disp = up_disp.view(N, C, 9, 1, 1, H, W) |
|
|
|
up_disp = torch.sum(mask * up_disp, dim=2) |
|
up_disp = up_disp.permute(0, 1, 4, 2, 5, 3) |
|
return up_disp.reshape(N, C, 4*H, 4*W) |
|
|
|
def forward(self, imgs, epoch=1, step=100): |
|
|
|
feats = self.backbone(imgs) |
|
ppm_out = self.decoder(feats) |
|
|
|
e3 = self.crf3(feats[3], ppm_out) |
|
e3 = nn.PixelShuffle(2)(e3) |
|
e2 = self.crf2(feats[2], e3) |
|
e2 = nn.PixelShuffle(2)(e2) |
|
e1 = self.crf1(feats[1], e2) |
|
e1 = nn.PixelShuffle(2)(e1) |
|
|
|
|
|
if epoch == 0 and step < 80: |
|
max_tree_depth = 3 |
|
else: |
|
max_tree_depth = 6 |
|
|
|
if self.up_mode == 'mask': |
|
mask = self.mask_head(e1) |
|
|
|
b, c, h, w = e1.shape |
|
device = e1.device |
|
|
|
depth = torch.zeros([b, 1, h, w]).to(device) |
|
context = feats[0] |
|
gru_hidden = torch.tanh(self.project(e1)) |
|
pred_depths_r_list, pred_depths_c_list, uncertainty_maps_list = self.update(depth, context, gru_hidden, max_tree_depth, self.depth_num, self.min_depth, self.max_depth) |
|
|
|
if self.up_mode == 'mask': |
|
for i in range(len(pred_depths_r_list)): |
|
pred_depths_r_list[i] = self.upsample_mask(pred_depths_r_list[i], mask) |
|
for i in range(len(pred_depths_c_list)): |
|
pred_depths_c_list[i] = self.upsample_mask(pred_depths_c_list[i], mask.detach()) |
|
for i in range(len(uncertainty_maps_list)): |
|
uncertainty_maps_list[i] = self.upsample_mask(uncertainty_maps_list[i], mask.detach()) |
|
else: |
|
for i in range(len(pred_depths_r_list)): |
|
pred_depths_r_list[i] = upsample(pred_depths_r_list[i], scale_factor=4) |
|
for i in range(len(pred_depths_c_list)): |
|
pred_depths_c_list[i] = upsample(pred_depths_c_list[i], scale_factor=4) |
|
for i in range(len(uncertainty_maps_list)): |
|
uncertainty_maps_list[i] = upsample(uncertainty_maps_list[i], scale_factor=4) |
|
|
|
return pred_depths_r_list, pred_depths_c_list, uncertainty_maps_list |
|
|
|
class DispHead(nn.Module): |
|
def __init__(self, input_dim=100): |
|
super(DispHead, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(input_dim, 1, 3, padding=1) |
|
|
|
self.sigmoid = nn.Sigmoid() |
|
|
|
def forward(self, x, scale): |
|
|
|
x = self.sigmoid(self.conv1(x)) |
|
if scale > 1: |
|
x = upsample(x, scale_factor=scale) |
|
return x |
|
|
|
class BasicUpdateBlockDepth(nn.Module): |
|
def __init__(self, hidden_dim=128, context_dim=192): |
|
super(BasicUpdateBlockDepth, self).__init__() |
|
|
|
self.encoder = ProjectionInputDepth(hidden_dim=hidden_dim, out_chs=hidden_dim * 2) |
|
self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=self.encoder.out_chs+context_dim) |
|
self.p_head = PHead(hidden_dim, hidden_dim) |
|
|
|
def forward(self, depth, context, gru_hidden, seq_len, depth_num, min_depth, max_depth): |
|
|
|
pred_depths_r_list = [] |
|
pred_depths_c_list = [] |
|
uncertainty_maps_list = [] |
|
|
|
b, _, h, w = depth.shape |
|
depth_range = max_depth - min_depth |
|
interval = depth_range / depth_num |
|
interval = interval * torch.ones_like(depth) |
|
interval = interval.repeat(1, depth_num, 1, 1) |
|
interval = torch.cat([torch.ones_like(depth) * min_depth, interval], 1) |
|
|
|
bin_edges = torch.cumsum(interval, 1) |
|
current_depths = 0.5 * (bin_edges[:, :-1] + bin_edges[:, 1:]) |
|
index_iter = 0 |
|
|
|
for i in range(seq_len): |
|
input_features = self.encoder(current_depths.detach()) |
|
input_c = torch.cat([input_features, context], dim=1) |
|
|
|
gru_hidden = self.gru(gru_hidden, input_c) |
|
pred_prob = self.p_head(gru_hidden) |
|
|
|
depth_r = (pred_prob * current_depths.detach()).sum(1, keepdim=True) |
|
pred_depths_r_list.append(depth_r) |
|
|
|
uncertainty_map = torch.sqrt((pred_prob * ((current_depths.detach() - depth_r.repeat(1, depth_num, 1, 1))**2)).sum(1, keepdim=True)) |
|
uncertainty_maps_list.append(uncertainty_map) |
|
|
|
index_iter = index_iter + 1 |
|
|
|
pred_label = get_label(torch.squeeze(depth_r, 1), bin_edges, depth_num).unsqueeze(1) |
|
depth_c = torch.gather(current_depths.detach(), 1, pred_label.detach()) |
|
pred_depths_c_list.append(depth_c) |
|
|
|
label_target_bin_left = pred_label |
|
target_bin_left = torch.gather(bin_edges, 1, label_target_bin_left) |
|
label_target_bin_right = (pred_label.float() + 1).long() |
|
target_bin_right = torch.gather(bin_edges, 1, label_target_bin_right) |
|
|
|
bin_edges, current_depths = update_sample(bin_edges, target_bin_left, target_bin_right, depth_r.detach(), pred_label.detach(), depth_num, min_depth, max_depth, uncertainty_map) |
|
|
|
return pred_depths_r_list, pred_depths_c_list, uncertainty_maps_list |
|
|
|
class PHead(nn.Module): |
|
def __init__(self, input_dim=128, hidden_dim=128): |
|
super(PHead, self).__init__() |
|
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) |
|
self.conv2 = nn.Conv2d(hidden_dim, 16, 3, padding=1) |
|
|
|
def forward(self, x): |
|
out = torch.softmax(self.conv2(F.relu(self.conv1(x))), 1) |
|
return out |
|
|
|
class SepConvGRU(nn.Module): |
|
def __init__(self, hidden_dim=128, input_dim=128+192): |
|
super(SepConvGRU, self).__init__() |
|
|
|
self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) |
|
self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) |
|
self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) |
|
self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) |
|
self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) |
|
self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) |
|
|
|
def forward(self, h, x): |
|
|
|
hx = torch.cat([h, x], dim=1) |
|
z = torch.sigmoid(self.convz1(hx)) |
|
r = torch.sigmoid(self.convr1(hx)) |
|
q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1))) |
|
|
|
h = (1-z) * h + z * q |
|
|
|
|
|
hx = torch.cat([h, x], dim=1) |
|
z = torch.sigmoid(self.convz2(hx)) |
|
r = torch.sigmoid(self.convr2(hx)) |
|
q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1))) |
|
h = (1-z) * h + z * q |
|
|
|
return h |
|
|
|
class ProjectionInputDepth(nn.Module): |
|
def __init__(self, hidden_dim, out_chs): |
|
super().__init__() |
|
self.out_chs = out_chs |
|
self.convd1 = nn.Conv2d(16, hidden_dim, 7, padding=3) |
|
self.convd2 = nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1) |
|
self.convd3 = nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1) |
|
self.convd4 = nn.Conv2d(hidden_dim, out_chs, 3, padding=1) |
|
|
|
def forward(self, depth): |
|
d = F.relu(self.convd1(depth)) |
|
d = F.relu(self.convd2(d)) |
|
d = F.relu(self.convd3(d)) |
|
d = F.relu(self.convd4(d)) |
|
|
|
return d |
|
|
|
class Projection(nn.Module): |
|
def __init__(self, in_chs, out_chs): |
|
super().__init__() |
|
self.conv = nn.Conv2d(in_chs, out_chs, 3, padding=1) |
|
|
|
def forward(self, x): |
|
out = self.conv(x) |
|
|
|
return out |
|
|
|
def upsample(x, scale_factor=2, mode="bilinear", align_corners=False): |
|
"""Upsample input tensor by a factor of 2 |
|
""" |
|
return F.interpolate(x, scale_factor=scale_factor, mode=mode, align_corners=align_corners) |
|
|
|
def upsample1(x, scale_factor=2, mode="bilinear"): |
|
"""Upsample input tensor by a factor of 2 |
|
""" |
|
return F.interpolate(x, scale_factor=scale_factor, mode=mode) |
|
|
|
|
|
|