|
import gradio as gr |
|
import pandas as pd |
|
import json |
|
import os |
|
|
|
|
|
TASKS_CLUSTERING = [ |
|
"ArxivClusteringP2P", |
|
"ArxivClusteringS2S", |
|
"BiorxivClusteringP2P", |
|
"BiorxivClusteringS2S", |
|
"MedrxivClusteringP2P", |
|
"MedrxivClusteringS2S", |
|
"RedditClustering", |
|
"RedditClusteringP2P", |
|
"StackExchangeClustering", |
|
"StackExchangeClusteringP2P", |
|
"TwentyNewsgroupsClustering", |
|
] |
|
|
|
TASKS_PAIR_CLASSIFICATION = [ |
|
"SprintDuplicateQuestions", |
|
"TwitterSemEval2015", |
|
"TwitterURLCorpus", |
|
] |
|
|
|
def display_table(): |
|
|
|
data = { |
|
"Model": ["ModelA", "ModelB", "ModelC"], |
|
"Model Size (MB)": [293, 793, 1000], |
|
"Score": [0.92, 0.85, 0.89], |
|
"Quantized Score": [0.91, 0.84, 0.88] |
|
} |
|
df = pd.DataFrame(data) |
|
|
|
df.index.name = "Rank" |
|
html_table = df.to_html() |
|
|
|
html_content = f""" |
|
<style> |
|
.wide_table {{ |
|
width: 100%; |
|
}} |
|
</style> |
|
{html_table} |
|
""" |
|
|
|
return html_content |
|
|
|
|
|
def compute_model_score(model_name): |
|
results_dir = "results" |
|
model_dir = os.path.join(results_dir, model_name) |
|
|
|
scores = [] |
|
|
|
|
|
for task in TASKS_CLUSTERING: |
|
task_file = os.path.join(model_dir, f"{task}.json") |
|
with open(task_file, 'r') as f: |
|
data = json.load(f) |
|
v_measure = data['test']['v_measure'] |
|
scores.append(v_measure) |
|
|
|
|
|
for task in TASKS_PAIR_CLASSIFICATION: |
|
task_file = os.path.join(model_dir, f"{task}.json") |
|
with open(task_file, 'r') as f: |
|
data = json.load(f) |
|
max_ap = data['test']['max']['ap'] |
|
scores.append(max_ap) |
|
|
|
|
|
average_score = sum(scores) / len(scores) |
|
return average_score |
|
|
|
|
|
|
|
|
|
|
|
iface = gr.Interface(fn=display_table, live=True, inputs=[], outputs="html") |
|
|
|
iface.launch() |
|
|