qMTEB / quantize.py
varun4's picture
quantizing scripts added
0606100
import json
import os
import shutil
from dataclasses import dataclass, field
from typing import Optional, Set
from tqdm import tqdm
from transformers import (
AutoConfig,
AutoTokenizer,
HfArgumentParser
)
import onnx
from optimum.exporters.onnx import main_export, export_models
from optimum.exporters.tasks import TasksManager
from onnxruntime.quantization import (
quantize_dynamic,
QuantType
)
DEFAULT_QUANTIZE_PARAMS = {
'per_channel': True,
'reduce_range': True,
}
MODEL_SPECIFIC_QUANTIZE_PARAMS = {
'whisper': {
'per_channel': False,
'reduce_range': False,
}
}
MODELS_WITHOUT_TOKENIZERS = [
'wav2vec2'
]
@dataclass
class ConversionArguments:
"""
Arguments used for converting HuggingFace models to onnx.
"""
model_id: str = field(
metadata={
"help": "Model identifier"
}
)
quantize: bool = field(
default=False,
metadata={
"help": "Whether to quantize the model."
}
)
output_parent_dir: str = field(
default='./models/',
metadata={
"help": "Path where the converted model will be saved to."
}
)
task: Optional[str] = field(
default='auto',
metadata={
"help": (
"The task to export the model for. If not specified, the task will be auto-inferred based on the model. Available tasks depend on the model, but are among:"
f" {str(list(TasksManager._TASKS_TO_AUTOMODELS.keys()))}. For decoder models, use `xxx-with-past` to export the model using past key values in the decoder."
)
}
)
opset: int = field(
default=None,
metadata={
"help": (
"If specified, ONNX opset version to export the model with. Otherwise, the default opset will be used."
)
}
)
device: str = field(
default='cpu',
metadata={
"help": 'The device to use to do the export.'
}
)
skip_validation: bool = field(
default=False,
metadata={
"help": "Whether to skip validation of the converted model"
}
)
per_channel: bool = field(
default=None,
metadata={
"help": "Whether to quantize weights per channel"
}
)
reduce_range: bool = field(
default=None,
metadata={
"help": "Whether to quantize weights with 7-bits. It may improve the accuracy for some models running on non-VNNI machine, especially for per-channel mode"
}
)
output_attentions: bool = field(
default=False,
metadata={
"help": "Whether to output attentions from the model. NOTE: This is only supported for whisper models right now."
}
)
split_modalities: bool = field(
default=False,
metadata={
"help": "Whether to split multimodal models. NOTE: This is only supported for CLIP models right now."
}
)
def get_operators(model: onnx.ModelProto) -> Set[str]:
operators = set()
def traverse_graph(graph):
for node in graph.node:
operators.add(node.op_type)
for attr in node.attribute:
if attr.type == onnx.AttributeProto.GRAPH:
subgraph = attr.g
traverse_graph(subgraph)
traverse_graph(model.graph)
return operators
def quantize(model_names_or_paths, **quantize_kwargs):
"""
Quantize the weights of the model from float32 to int8 to allow very efficient inference on modern CPU
Uses unsigned ints for activation values, signed ints for weights, per
https://onnxruntime.ai/docs/performance/quantization.html#data-type-selection
it is faster on most CPU architectures
Args:
onnx_model_path: Path to location the exported ONNX model is stored
Returns: The Path generated for the quantized
"""
quantize_config = dict(
**quantize_kwargs,
per_model_config={}
)
for model in tqdm(model_names_or_paths, desc='Quantizing'):
directory_path = os.path.dirname(model)
file_name_without_extension = os.path.splitext(
os.path.basename(model))[0]
# NOTE:
# As of 2023/04/20, the current latest version of onnxruntime-web is 1.14.0, and does not support INT8 weights for Conv layers.
# For this reason, we choose model weight types to ensure compatibility with onnxruntime-web.
#
# As per docs, signed weight type (QInt8) is faster on most CPUs, so, we use that unless the model contains a Conv layer.
# For more information, see:
# - https://github.com/microsoft/onnxruntime/issues/3130#issuecomment-1105200621
# - https://github.com/microsoft/onnxruntime/issues/2339
loaded_model = onnx.load_model(model)
op_types = get_operators(loaded_model)
weight_type = QuantType.QUInt8 if 'Conv' in op_types else QuantType.QInt8
quantize_dynamic(
model_input=model,
model_output=os.path.join(
directory_path, f'{file_name_without_extension}_quantized.onnx'),
weight_type=weight_type,
optimize_model=False,
# TODO allow user to specify these
# op_types_to_quantize=['MatMul', 'Add', 'Conv'],
extra_options=dict(
EnableSubgraph=True
),
**quantize_kwargs
)
quantize_config['per_model_config'][file_name_without_extension] = dict(
op_types=list(op_types),
weight_type=str(weight_type),
)
# Save quantization config
with open(os.path.join(directory_path, 'quantize_config.json'), 'w') as fp:
json.dump(quantize_config, fp, indent=4)
def main():
"""
Example usage:
python quantize.py --model_id sentence-transformers/all-MiniLM-L6-v2-unquantized --quantize --task default
"""
parser = HfArgumentParser(
(ConversionArguments, )
)
conv_args, = parser.parse_args_into_dataclasses()
model_id = conv_args.model_id
output_model_folder = os.path.join(conv_args.output_parent_dir, model_id)
# Create output folder
os.makedirs(output_model_folder, exist_ok=True)
# Saving the model config
config = AutoConfig.from_pretrained(model_id)
tokenizer = None
try:
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
except KeyError:
pass # No Tokenizer
except Exception as e:
if config.model_type not in MODELS_WITHOUT_TOKENIZERS:
raise e
# model_name_or_path can be local path or huggingface id
export_kwargs = dict(
model_name_or_path=model_id,
output=output_model_folder,
task=conv_args.task,
opset=conv_args.opset,
device=conv_args.device,
do_validation=not conv_args.skip_validation,
)
# Step 1. convert huggingface model to onnx
main_export(**export_kwargs)
# Step 2. (optional, recommended) quantize the converted model for fast inference and to reduce model size.
if conv_args.quantize:
# Update quantize config with model specific defaults
quantize_config = MODEL_SPECIFIC_QUANTIZE_PARAMS.get(
config.model_type, DEFAULT_QUANTIZE_PARAMS)
quantize([
os.path.join(output_model_folder, x)
for x in os.listdir(output_model_folder)
if x.endswith('.onnx') and not x.endswith('_quantized.onnx')
], **quantize_config)
# Step 3. Move .onnx files to the 'onnx' subfolder
os.makedirs(os.path.join(output_model_folder, 'onnx'), exist_ok=True)
for file in os.listdir(output_model_folder):
if file.endswith(('.onnx', '.onnx_data')):
shutil.move(os.path.join(output_model_folder, file),
os.path.join(output_model_folder, 'onnx', file))
if __name__ == '__main__':
main()