cfpb-assistant / agent.py
david-oplatka's picture
Add Population Data Tables
b1222b7
import os
from typing import Optional
from pydantic import Field, BaseModel
from omegaconf import OmegaConf
from llama_index.core.utilities.sql_wrapper import SQLDatabase
from sqlalchemy import create_engine
from dotenv import load_dotenv
load_dotenv(override=True)
from vectara_agentic.agent import Agent
from vectara_agentic.tools import ToolsFactory, VectaraToolFactory
def create_assistant_tools(cfg):
class QueryCFPBComplaints(BaseModel):
query: str = Field(description="The user query.")
Company: Optional[str] = Field(
default=None,
description="The company that the complaint is about.",
examples=['CAPITAL ONE FINANCIAL CORPORATION', 'BANK OF AMERICA, NATIONAL ASSOCIATION', 'CITIBANK, N.A.', 'WELLS FARGO & COMPANY', 'JPMORGAN CHASE & CO.']
)
State: Optional[str] = Field(
default=None,
descripition="The two-character state code where the consumer lives.",
examples=['CA', 'FL', 'NY', 'TX', 'GA']
)
vec_factory = VectaraToolFactory(
vectara_api_key=cfg.api_keys,
vectara_customer_id=cfg.customer_id,
vectara_corpus_id=cfg.corpus_ids
)
summarizer = 'vectara-experimental-summary-ext-2023-12-11-med-omni'
ask_complaints = vec_factory.create_rag_tool(
tool_name = "ask_complaints",
tool_description = """
Given a user query,
returns a response to a user question about customer complaints for bank services.
""",
tool_args_schema = QueryCFPBComplaints,
reranker = "chain", rerank_k = 100,
rerank_chain = [
{
"type": "slingshot",
"cutoff": 0.2
},
{
"type": "mmr",
"diversity_bias": 0.4,
"limit": 30
}
],
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
vectara_summarizer = summarizer,
include_citations = True,
)
tools_factory = ToolsFactory()
db_tools = tools_factory.database_tools(
tool_name_prefix = "cfpb",
content_description = 'Customer complaints about five banks (Bank of America, Wells Fargo, Capital One, Chase, and CITI Bank) and geographic information (counties and zip codes)',
sql_database = SQLDatabase(create_engine('sqlite:///cfpb_database.db')),
)
return (tools_factory.standard_tools() +
tools_factory.guardrail_tools() +
db_tools +
[ask_complaints]
)
def initialize_agent(_cfg, agent_progress_callback=None):
cfpb_complaints_bot_instructions = """
- You are a helpful research assistant,
with expertise in finance and complaints from the CFPB (Consumer Financial Protection Bureau),
in conversation with a user.
- For analytical/numeric questions, try to use the cfpb_load_data and other database tools.
- For questions about customers' complaints (the text of the complaint), use the ask_complaints tool.
You only need the query parameter to use this tool, but you can supply other parameters if provided.
Do not include the "References" section in your response.
- Never discuss politics, and always respond politely.
"""
agent = Agent(
tools=create_assistant_tools(_cfg),
topic="Customer complaints from the Consumer Financial Protection Bureau (CFPB)",
custom_instructions=cfpb_complaints_bot_instructions,
agent_progress_callback=agent_progress_callback
)
agent.report()
return agent
def get_agent_config() -> OmegaConf:
cfg = OmegaConf.create({
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
'corpus_ids': str(os.environ['VECTARA_CORPUS_IDS']),
'api_keys': str(os.environ['VECTARA_API_KEYS']),
'examples': os.environ.get('QUERY_EXAMPLES', None),
'demo_name': "cfpb-assistant",
'demo_welcome': "Welcome to the CFPB Customer Complaints demo.",
'demo_description': "This assistant can help you gain insights into customer complaints to banks recorded by the Consumer Financial Protection Bureau.",
})
return cfg