Spaces:
Running
on
T4
title: ColPali π€ Vespa - Visual Retrieval
short_description: Visual Retrieval with ColPali and Vespa
emoji: π
colorFrom: purple
colorTo: blue
sdk: gradio
sdk_version: 4.44.0
app_file: main.py
pinned: false
license: apache-2.0
models:
- vidore/colpaligemma-3b-pt-448-base
- vidore/colpali-v1.2
preload_from_hub:
- >-
vidore/colpaligemma-3b-pt-448-base
config.json,model-00001-of-00002.safetensors,model-00002-of-00002.safetensors,model.safetensors.index.json,preprocessor_config.json,special_tokens_map.json,tokenizer.json,tokenizer_config.json
12c59eb7e23bc4c26876f7be7c17760d5d3a1ffa
- >-
vidore/colpali-v1.2
adapter_config.json,adapter_model.safetensors,preprocessor_config.json,special_tokens_map.json,tokenizer.json,tokenizer_config.json
9912ce6f8a462d8cf2269f5606eabbd2784e764f
Visual Retrieval ColPali
Developing
First, install uv
:
curl -LsSf https://astral.sh/uv/install.sh | sh
Then, in this directory, run:
uv sync --extra dev
This will generate a virtual environment with the required dependencies at .venv
.
To activate the virtual environment, run:
source .venv/bin/activate
And run development server:
python hello.py
Preparation
First, set up your .env
file by renaming .env.example
to .env
and filling in the required values.
(Token can be shared with 1password, HF_TOKEN
is personal and must be created at huggingface)
If you are just connecting to a deployed Vespa app, you can skip to Connecting to the Vespa app.
Deploying the Vespa app
To deploy the Vespa app, run:
python deploy_vespa_app.py --tenant_name mytenant --vespa_application_name myapp --token_id_write mytokenid_write --token_id_read mytokenid_read
You should get an output like:
Found token endpoint: https://abcde.z.vespa-app.cloud
Feeding the data
Dependencies
In addition to the python dependencies, you also need poppler
On Mac:
brew install poppler
First, you need to create a huggingface token, after you have accepted the term to use the model at https://huggingface.co/google/paligemma-3b-mix-448.
Add the token to your environment variables as HF_TOKEN
:
export HF_TOKEN=yourtoken
To feed the data, run:
python feed_vespa.py --vespa_app_url https://myapp.z.vespa-app.cloud --vespa_cloud_secret_token mysecrettoken
Connecting to the Vespa app and querying
As a first step, you can run the query_vespa.py
script to run some sample queries against the Vespa app:
python query_vespa.py
Starting the front-end
python main.py