Spaces:
Running
Running
File size: 11,812 Bytes
57d7ed3 f0adec0 57d7ed3 9acc552 8f8ef33 9acc552 8f8ef33 57d7ed3 9acc552 8f8ef33 9acc552 57d7ed3 9acc552 0f2d9f6 57d7ed3 9acc552 57d7ed3 0f2d9f6 57d7ed3 f0adec0 57d7ed3 9acc552 57d7ed3 f0adec0 9acc552 4b41e60 f0adec0 9acc552 4b41e60 0f2d9f6 9acc552 57d7ed3 9acc552 57d7ed3 8f8ef33 3733e70 0f2d9f6 57d7ed3 9acc552 57d7ed3 f0adec0 9acc552 5f721d1 4b41e60 8f8ef33 9acc552 4b41e60 9acc552 5f721d1 8f8ef33 9acc552 57d7ed3 8f8ef33 3733e70 8f8ef33 3733e70 8f8ef33 3733e70 8f8ef33 3733e70 8f8ef33 3733e70 8f8ef33 3733e70 8f8ef33 3733e70 8f8ef33 5f721d1 3733e70 5f721d1 3733e70 5f721d1 3733e70 5f721d1 3733e70 5f721d1 3733e70 5f721d1 3733e70 5f721d1 3733e70 5f721d1 57d7ed3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import os
import sys
import tempfile
import os.path as osp
from PIL import Image
from io import BytesIO
import numpy as np
import pandas as pd
import streamlit as st
from PIL import ImageOps
from matplotlib import pyplot as plt
import altair as alt
root_path = osp.abspath(osp.join(__file__, osp.pardir))
sys.path.append(root_path)
from registry_utils import import_registered_modules
from app_utils import (
extract_frames,
is_image,
is_video,
convert_diameter,
overlay_text_on_frame,
process_frames,
process_video,
resize_frame,
)
import_registered_modules()
CAM_METHODS = ["CAM"]
TV_MODELS = ["ResNet18", "ResNet50"]
SR_METHODS = ["GFPGAN", "CodeFormer", "RealESRGAN", "SRResNet", "HAT"]
UPSCALE = [2, 4]
UPSCALE_METHODS = ["BILINEAR", "BICUBIC"]
LABEL_MAP = ["left_pupil", "right_pupil"]
def main():
st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
st.title("EyeDentify Playground")
cols = st.columns((1, 1))
cols[0].header("Input")
cols[-1].header("Prediction")
st.sidebar.title("Upload Face or Eye")
uploaded_file = st.sidebar.file_uploader(
"Upload Image or Video", type=["png", "jpeg", "jpg", "mp4", "avi", "mov", "mkv", "webm"]
)
if uploaded_file is not None:
file_extension = uploaded_file.name.split(".")[-1]
if is_image(file_extension):
input_img = Image.open(BytesIO(uploaded_file.read())).convert("RGB")
# NOTE: images taken with phone camera has an EXIF data field which often rotates images taken with the phone in a tilted position. PIL has a utility function that removes this data and ‘uprights’ the image.
input_img = ImageOps.exif_transpose(input_img)
input_img = resize_frame(input_img, max_width=640, max_height=480)
input_img = resize_frame(input_img, max_width=640, max_height=480)
cols[0].image(input_img, use_column_width=True)
st.session_state.total_frames = 1
elif is_video(file_extension):
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(uploaded_file.read())
video_path = tfile.name
video_frames = extract_frames(video_path)
cols[0].video(video_path)
st.session_state.total_frames = len(video_frames)
st.session_state.current_frame = 0
st.session_state.frame_placeholder = cols[0].empty()
txt = f"<p style='font-size:20px;'> Number of Frames Processed: <strong>{st.session_state.current_frame} / {st.session_state.total_frames}</strong> </p>"
st.session_state.frame_placeholder.markdown(txt, unsafe_allow_html=True)
st.sidebar.title("Setup")
pupil_selection = st.sidebar.selectbox(
"Pupil Selection", ["both"] + LABEL_MAP, help="Select left or right pupil OR both for diameter estimation"
)
tv_model = st.sidebar.selectbox("Classification model", ["ResNet18", "ResNet50"], help="Supported Models")
blink_detection = st.sidebar.checkbox("Detect Blinks")
st.markdown("<style>#vg-tooltip-element{z-index: 1000051}</style>", unsafe_allow_html=True)
if st.sidebar.button("Predict Diameter & Compute CAM"):
if uploaded_file is None:
st.sidebar.error("Please upload an image or video")
else:
with st.spinner("Analyzing..."):
if is_image(file_extension):
input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios = process_frames(
cols,
[input_img],
tv_model,
pupil_selection,
cam_method=CAM_METHODS[-1],
blink_detection=blink_detection,
)
# for ff in face_frames:
# if ff["has_face"]:
# cols[1].image(face_frames[0]["img"], use_column_width=True)
input_frames_keys = input_frames.keys()
video_cols = cols[1].columns(len(input_frames_keys))
for i, eye_type in enumerate(input_frames_keys):
video_cols[i].image(input_frames[eye_type][-1], use_column_width=True)
output_frames_keys = output_frames.keys()
fig, axs = plt.subplots(1, len(output_frames_keys), figsize=(10, 5))
for i, eye_type in enumerate(output_frames_keys):
height, width, c = output_frames[eye_type][0].shape
video_cols[i].image(output_frames[eye_type][-1], use_column_width=True)
frame = np.zeros((height, width, c), dtype=np.uint8)
text = f"{predicted_diameters[eye_type][0]:.2f}"
frame = overlay_text_on_frame(frame, text)
video_cols[i].image(frame, use_column_width=True)
elif is_video(file_extension):
output_video_path = f"{root_path}/tmp.webm"
input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios = process_video(
cols,
video_frames,
tv_model,
pupil_selection,
output_video_path,
cam_method=CAM_METHODS[-1],
blink_detection=blink_detection,
)
os.remove(video_path)
num_columns = len(predicted_diameters)
# Create a layout for the charts
cols = st.columns(num_columns)
# colors = ["#2ca02c", "#d62728", "#1f77b4", "#ff7f0e"] # Green, Red, Blue, Orange
colors = ["#1f77b4", "#ff7f0e", "#636363"] # Blue, Orange, Gray
# Iterate through categories and assign charts to columns
for i, (category, values) in enumerate(predicted_diameters.items()):
with cols[i]: # Directly use the column index
# st.subheader(category) # Add a subheader for the category
# Convert values to numeric, replacing non-numeric values with None
values = [convert_diameter(value) for value in values]
# Create a DataFrame from the values for Altair
df = pd.DataFrame(values, columns=[category])
df["Frame"] = range(1, len(values) + 1) # Create a frame column starting from 1
# Get the min and max values for y-axis limits, ignoring None
min_value = min(filter(lambda x: x is not None, values), default=None)
max_value = max(filter(lambda x: x is not None, values), default=None)
# Create an Altair chart with y-axis limits
line_chart = (
alt.Chart(df)
.mark_line(color=colors[i])
.encode(
x=alt.X("Frame:Q", title="Frame Number"),
y=alt.Y(
f"{category}:Q",
title="Diameter",
scale=alt.Scale(domain=[min_value, max_value]),
),
tooltip=[
"Frame",
alt.Tooltip(f"{category}:Q", title="Diameter"),
],
)
# .properties(title=f"{category} - Predicted Diameters")
# .configure_axis(grid=True)
)
points_chart = line_chart.mark_point(color=colors[i], filled=True)
final_chart = (
line_chart.properties(title=f"{category} - Predicted Diameters") + points_chart
).interactive()
final_chart = final_chart.configure_axis(grid=True)
# Display the Altair chart
st.altair_chart(final_chart, use_container_width=True)
if eyes_ratios is not None and len(eyes_ratios) > 0:
df = pd.DataFrame(eyes_ratios, columns=["EAR"])
df["Frame"] = range(1, len(eyes_ratios) + 1) # Create a frame column starting from 1
# Create an Altair chart for eyes_ratios
line_chart = (
alt.Chart(df)
.mark_line(color=colors[-1]) # Set color of the line
.encode(
x=alt.X("Frame:Q", title="Frame Number"),
y=alt.Y("EAR:Q", title="Eyes Aspect Ratio"),
tooltip=["Frame", "EAR"],
)
# .properties(title="Eyes Aspect Ratios (EARs)")
# .configure_axis(grid=True)
)
points_chart = line_chart.mark_point(color=colors[-1], filled=True)
# Create a horizontal rule at y=0.22
line1 = alt.Chart(pd.DataFrame({"y": [0.22]})).mark_rule(color="red").encode(y="y:Q")
line2 = alt.Chart(pd.DataFrame({"y": [0.25]})).mark_rule(color="green").encode(y="y:Q")
# Add text annotations for the lines
text1 = (
alt.Chart(pd.DataFrame({"y": [0.22], "label": ["Definite Blinks (<=0.22)"]}))
.mark_text(align="left", dx=100, dy=9, color="red", size=16)
.encode(y="y:Q", text="label:N")
)
text2 = (
alt.Chart(pd.DataFrame({"y": [0.25], "label": ["No Blinks (>=0.25)"]}))
.mark_text(align="left", dx=-150, dy=-9, color="green", size=16)
.encode(y="y:Q", text="label:N")
)
# Add gray area text for the region between red and green lines
gray_area_text = (
alt.Chart(pd.DataFrame({"y": [0.235], "label": ["Gray Area"]}))
.mark_text(align="left", dx=0, dy=0, color="gray", size=16)
.encode(y="y:Q", text="label:N")
)
# Combine all elements: line chart, points, rules, and text annotations
final_chart = (
line_chart.properties(title="Eyes Aspect Ratios (EARs)")
+ points_chart
+ line1
+ line2
+ text1
+ text2
+ gray_area_text
).interactive()
# Configure axis properties at the chart level
final_chart = final_chart.configure_axis(grid=True)
# Display the Altair chart
# st.subheader("Eyes Aspect Ratios (EARs)")
st.altair_chart(final_chart, use_container_width=True)
if __name__ == "__main__":
main()
|