File size: 4,539 Bytes
57d7ed3
 
f0adec0
57d7ed3
9acc552
 
 
 
 
 
57d7ed3
 
 
 
 
9acc552
 
 
 
 
 
 
 
 
 
57d7ed3
 
 
9acc552
 
0f2d9f6
 
 
 
57d7ed3
 
 
 
 
 
9acc552
57d7ed3
 
0f2d9f6
57d7ed3
f0adec0
57d7ed3
9acc552
57d7ed3
f0adec0
 
 
9acc552
 
 
 
 
 
 
f0adec0
 
 
 
 
9acc552
 
0f2d9f6
 
 
9acc552
57d7ed3
9acc552
57d7ed3
0f2d9f6
57d7ed3
9acc552
57d7ed3
 
f0adec0
9acc552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57d7ed3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
import sys
import tempfile
import os.path as osp
from PIL import Image
from io import BytesIO
import numpy as np
import streamlit as st
from PIL import ImageOps
from matplotlib import pyplot as plt

root_path = osp.abspath(osp.join(__file__, osp.pardir))
sys.path.append(root_path)

from registry_utils import import_registered_modules
from app_utils import (
    extract_frames,
    is_image,
    is_video,
    display_results,
    overlay_text_on_frame,
    process_frames,
    process_video,
    resize_frame,
)

import_registered_modules()

CAM_METHODS = ["CAM"]
TV_MODELS = ["ResNet18", "ResNet50"]
SR_METHODS = ["GFPGAN", "CodeFormer", "RealESRGAN", "SRResNet", "HAT"]
UPSCALE = [2, 4]
UPSCALE_METHODS = ["BILINEAR", "BICUBIC"]
LABEL_MAP = ["left_pupil", "right_pupil"]


def main():
    st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
    st.title("EyeDentify Playground")
    cols = st.columns((1, 1))
    cols[0].header("Input")
    cols[-1].header("Prediction")

    st.sidebar.title("Upload Face or Eye")
    uploaded_file = st.sidebar.file_uploader(
        "Upload Image or Video", type=["png", "jpeg", "jpg", "mp4", "avi", "mov", "mkv", "webm"]
    )

    if uploaded_file is not None:
        file_extension = uploaded_file.name.split(".")[-1]

        if is_image(file_extension):
            input_img = Image.open(BytesIO(uploaded_file.read())).convert("RGB")
            # NOTE: images taken with phone camera has an EXIF data field which often rotates images taken with the phone in a tilted position. PIL has a utility function that removes this data and ‘uprights’ the image.
            input_img = ImageOps.exif_transpose(input_img)
            input_img = resize_frame(input_img, max_width=640, max_height=480)
            input_img = resize_frame(input_img, max_width=640, max_height=480)
            cols[0].image(input_img, use_column_width=True)
            input_img.save("out.jpg")

        elif is_video(file_extension):
            tfile = tempfile.NamedTemporaryFile(delete=False)
            tfile.write(uploaded_file.read())
            video_path = tfile.name
            video_frames = extract_frames(video_path)
            cols[0].video(video_path)

    st.sidebar.title("Setup")
    pupil_selection = st.sidebar.selectbox(
        "Pupil Selection", ["both"] + LABEL_MAP, help="Select left or right pupil OR both for diameter estimation"
    )
    tv_model = st.sidebar.selectbox("Classification model", ["ResNet18", "ResNet50"], help="Supported Models")

    if st.sidebar.button("Predict Diameter & Compute CAM"):
        if uploaded_file is None:
            st.sidebar.error("Please upload an image or video")
        else:
            with st.spinner("Analyzing..."):

                if is_image(file_extension):
                    input_frames, output_frames, predicted_diameters, face_frames = process_frames(
                        [input_img], tv_model, pupil_selection, cam_method=CAM_METHODS[-1]
                    )
                    for ff in face_frames:
                        if ff["has_face"]:
                            cols[1].image(face_frames[0]["img"], use_column_width=True)

                    input_frames_keys = input_frames.keys()
                    video_cols = cols[1].columns(len(input_frames_keys))
                    for i, eye_type in enumerate(input_frames_keys):
                        video_cols[i].image(input_frames[eye_type][-1], use_column_width=True)

                    output_frames_keys = output_frames.keys()
                    fig, axs = plt.subplots(1, len(output_frames_keys), figsize=(10, 5))
                    for i, eye_type in enumerate(output_frames_keys):
                        height, width, c = output_frames[eye_type][0].shape
                        video_cols[i].image(output_frames[eye_type][-1], use_column_width=True)

                        frame = np.zeros((height, width, c), dtype=np.uint8)
                        text = f"{predicted_diameters[eye_type][0]:.2f}"
                        frame = overlay_text_on_frame(frame, text)
                        video_cols[i].image(frame, use_column_width=True)

                elif is_video(file_extension):
                    output_video_path = f"{root_path}/tmp.webm"
                    process_video(
                        cols, video_frames, tv_model, pupil_selection, output_video_path, cam_method=CAM_METHODS[-1]
                    )

                    os.remove(video_path)


if __name__ == "__main__":
    main()