File size: 12,569 Bytes
57dc958 dfa2720 a8edd17 dfa2720 b1754ef 8e69b68 b1754ef 8e69b68 210792f b1754ef 210792f 53ac890 b1754ef a8edd17 a17bd15 b1754ef a8edd17 b1754ef a6d7a0b b1754ef ddbca10 b1754ef 57dc958 b1754ef 9c740c6 62b2bcc a8edd17 b1754ef 9c740c6 b1754ef 67f5de2 b1754ef 55d67a5 b1754ef d7f32e5 b1754ef d7f32e5 2b3c311 d7f32e5 b1754ef 55d67a5 b1754ef 57dc958 b1754ef 55d67a5 b1754ef 57d037d b1754ef a6d7a0b 77cb3a8 b8a80e6 57dc958 b1754ef 57dc958 b1754ef 57dc958 b8a80e6 b1754ef 1939650 b1754ef 57dc958 b1754ef b8a80e6 b1754ef b8a80e6 b1754ef b8a80e6 1939650 ff78698 1939650 b1754ef b8a80e6 1939650 ff78698 1939650 5434cca b8a80e6 5434cca 37ac37c 5434cca 37ac37c 64c27bc 5434cca ff78698 9cfadda 1939650 b1754ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import time
print('1')
print(time.time())
#__import__('pysqlite3')
#import sys
#sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
import os
import torch
#os.system('wget -q https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.4.2/auto_gptq-0.4.2+cu118-cp310-cp310-linux_x86_64.whl')
#os.system('pip install -qqq auto_gptq-0.4.2+cu118-cp310-cp310-linux_x86_64.whl --progress-bar off')
#print(f"Is CUDA available: {torch.cuda.is_available()}")
os.system('nvidia-smi')
import uuid
#import replicate
import requests
import streamlit as st
from streamlit.logger import get_logger
from auto_gptq import AutoGPTQForCausalLM
from langchain import HuggingFacePipeline, PromptTemplate
from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from pdf2image import convert_from_path
from transformers import AutoTokenizer, TextStreamer, pipeline
from langchain.memory import ConversationBufferMemory
from gtts import gTTS
from io import BytesIO
from langchain.chains import ConversationalRetrievalChain
import streamlit.components.v1 as components
#from sentence_transformers import SentenceTransformer
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.vectorstores.utils import filter_complex_metadata
import fitz
from PIL import Image
from langchain.vectorstores import FAISS
import transformers
user_session_id = uuid.uuid4()
logger = get_logger(__name__)
st.set_page_config(page_title="Document QA by Dono", page_icon="🤖", )
st.session_state.disabled = False
st.title("Document QA by Dono")
#st.markdown(f"""<style>
# .stApp {{background-image: url("https://media.istockphoto.com/id/450481545/photo/glowing-lightbulb-against-black-background.webp?b=1&s=170667a&w=0&k=20&c=fJ91chWN1UkoKTNUvwgiQwpM80DlRpVC-WlJH_78OvE=");
# background-attachment: fixed;
# background-size: cover}}
# </style>
# """, unsafe_allow_html=True)
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
@st.cache_data
def load_data():
loader = PyPDFDirectoryLoader("/home/user/app/pdfs/")
docs = loader.load()
print(len(docs))
return docs
@st.cache_resource
def load_model(_docs):
#embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-large",model_kwargs={"device":DEVICE})
embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",model_kwargs={"device":DEVICE})
print(DEVICE)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=256)
texts = text_splitter.split_documents(docs)
print('embedding done')
#db = Chroma.from_documents(texts, embeddings, persist_directory="/home/user/app/db")
db = FAISS.from_documents(texts, embeddings)
print('db done')
model_name_or_path = "TheBloke/Llama-2-13B-chat-GPTQ"
model_basename = "model"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(
model_name_or_path,
revision="gptq-8bit-128g-actorder_False",
model_basename=model_basename,
use_safetensors=True,
trust_remote_code=True,
inject_fused_attention=False,
device=DEVICE,
quantize_config=None,
)
print('model done')
DEFAULT_SYSTEM_PROMPT = """
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.
Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.
Please ensure that your responses are socially unbiased and positive in nature.
Always provide the citation for the answer from the text.
Try to include any section or subsection present in the text responsible for the answer.
Provide reference. Provide page number, section, sub section etc from which answer is taken.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
Given a government document that outlines rules and regulations for a specific industry or sector, use your language model to answer questions about the rules and their applicability over time.
The document may include provisions that take effect at different times, such as immediately upon publication, after a grace period, or on a specific date in the future.
Your task is to identify the relevant rules and determine when they go into effect, taking into account any dependencies or exceptions that may apply.
The current date is 14 September, 2023. Try to extract information which is closer to this date and not in very past.
Take a deep breath and work on this problem step-by-step.
""".strip()
def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
return f"""[INST] <<SYS>>{system_prompt}<</SYS>>{prompt} [/INST]""".strip()
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
text_pipeline = pipeline("text-generation",model=model,tokenizer=tokenizer,max_new_tokens=1024,
temperature=0.2,top_p=0.95,repetition_penalty=1.15,streamer=streamer,)
llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0.2})
print('llm done')
SYSTEM_PROMPT = "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer."
template = generate_prompt("""{context} Question: {question} """,system_prompt=SYSTEM_PROMPT,) #Enter memory here!
prompt = PromptTemplate(template=template, input_variables=["context", "question"]) #Add history here
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=db.as_retriever(search_kwargs={"k": 5}),
return_source_documents=True,
chain_type_kwargs={"prompt": prompt,
"verbose": False,
#"memory": ConversationBufferMemory(
#memory_key="history",
#input_key="question",
#return_messages=True)
},)
print('load done')
return qa_chain
#uploaded_file = len(docs)
#flag = 0
#if uploaded_file is not None:
# flag = 1
model_name_or_path = "TheBloke/Llama-2-13B-chat-GPTQ"
model_basename = "model"
st.session_state["llm_model"] = model_name_or_path
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def on_select():
st.session_state.disabled = True
def get_message_history():
for message in st.session_state.messages:
role, content = message["role"], message["content"]
yield f"{role.title()}: {content}"
docs = load_data()
qa_chain = load_model(docs)
print('2')
print(time.time())
if prompt := st.chat_input("How can I help you today?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
message_history = "\n".join(list(get_message_history())[-3:])
logger.info(f"{user_session_id} Message History: {message_history}")
# question = st.text_input("Ask your question", placeholder="Try to include context in your question",
# disabled=not uploaded_file,)
print('3')
print(time.time())
result = qa_chain(prompt)
print('4')
print(time.time())
output = [result['result']]
# for item in output:
# full_response += item
# message_placeholder.markdown(full_response + "▌")
# message_placeholder.markdown(full_response)
#st.write(repr(result['source_documents'][0].metadata['page']))
#st.write(repr(result['source_documents'][0]))
print('5')
print(time.time())
def generate_pdf():
page_number = int(result['source_documents'][0].metadata['page'])
doc = fitz.open(str(result['source_documents'][0].metadata['source']))
text = str(result['source_documents'][0].page_content)
if text != '':
for page in doc:
### SEARCH
text_instances = page.search_for(text)
### HIGHLIGHT
for inst in text_instances:
highlight = page.add_highlight_annot(inst)
highlight.update()
### OUTPUT
doc.save("/home/user/app/pdf2image/output.pdf", garbage=4, deflate=True, clean=True)
# pdf_to_open = repr(result['source_documents'][0].metadata['source'])
def pdf_page_to_image(pdf_file, page_number, output_image):
# Open the PDF file
pdf_document = fitz.open(pdf_file)
# Get the specific page
page = pdf_document[page_number]
# Define the image DPI (dots per inch)
dpi = 300 # You can adjust this as needed
# Convert the page to an image
pix = page.get_pixmap(matrix=fitz.Matrix(dpi / 100, dpi / 100))
# Save the image as a PNG file
pix.save(output_image, "png")
# Close the PDF file
pdf_document.close()
pdf_page_to_image('/home/user/app/pdf2image/output.pdf', page_number, '/home/user/app/pdf2image/output.png')
image = Image.open('/home/user/app/pdf2image/output.png')
#st.sidebar.image(image)
st.session_state.image_displayed = True
return image
def generate_audio():
sound_file = BytesIO()
tts = gTTS(result['result'], lang='en')
tts.write_to_fp(sound_file)
#st.sidebar.audio(sound_file)
st.session_state.sound_played = True
return sound_file
#st.button(':speaker:', type='primary',on_click=generate_audio)
#st.button('Reference',type='primary',on_click=generate_pdf)
# Create placeholders for output
image_output = st.empty()
sound_output = st.empty()
# Create a button to display the image
# if st.button("Reference"):
# image_output.clear()
# generate_pdf()
# # Create a button to play the sound
# if st.button(":speaker:"):
# sound_output.clear()
# generate_audio()
# on_audio = st.checkbox(':speaker:', key="speaker")
# on_ref = st.checkbox('Reference', key="reference")
# if on_audio:
# generate_audio()
# if on_ref:
# generate_pdf()
# Initialize session state variables
if "image_displayed" not in st.session_state:
st.session_state.image_displayed = False
if "sound_played" not in st.session_state:
st.session_state.sound_played = False
# Define functions to display the image and play the sound
# def display_image():
# st.image("image.png")
# st.session_state.image_displayed = True
# def play_sound():
# st.audio("sound.mp3")
# st.session_state.sound_played = True
# Create the two buttons
#st.button("Display Image", on_click=generate_pdf)
#st.button("Play Sound", on_click=generate_audio)
# # Check if the image has been displayed and display it if it has not
# if not st.session_state.image_displayed:
# generate_pdf()
# # Check if the sound has been played and play it if it has not
# if not st.session_state.sound_played:
# generate_audio()
for item in output:
full_response += item
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
if st.sidebar.button("Display Image"):
a=generate_pdf()
message_placeholder.image(a)
if st.sidebar.button("Play Sound"):
x=generate_audio()
message_placeholder.audio(x)
st.session_state.messages.append({"role": "assistant", "content": full_response})
|