File size: 9,239 Bytes
b1754ef
8e69b68
b1754ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8edd17
a17bd15
7100c36
47b76c9
b1754ef
 
 
 
 
 
 
 
 
 
a6d7a0b
 
 
 
 
b1754ef
 
ddbca10
8ef8a1a
b1754ef
 
a8edd17
8ef8a1a
b1754ef
 
 
 
 
 
67f5de2
b1754ef
 
 
 
 
 
 
 
 
d7f32e5
 
 
 
 
7cff7cb
b1754ef
d7f32e5
 
 
7cff7cb
d7f32e5
b1754ef
 
 
 
 
 
 
7cff7cb
 
 
 
 
 
 
 
b1754ef
 
7cff7cb
 
 
b1754ef
 
 
 
 
 
57dc958
b1754ef
 
7cff7cb
55d67a5
 
b1754ef
 
 
7cff7cb
b1754ef
 
 
 
 
 
4471a1a
b1754ef
 
 
 
 
 
 
 
 
e8d9658
b1754ef
 
 
 
 
 
a6d7a0b
 
77cb3a8
b1754ef
 
 
 
 
 
 
 
dfd0a9c
b1754ef
e206c3b
 
 
 
b1754ef
4c5bc27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f639c46
4c5bc27
f639c46
7100c36
 
4c5bc27
26406c9
 
 
 
 
 
 
3ae5e24
 
26406c9
 
 
3ae5e24
26406c9
 
 
 
 
 
 
 
37155db
4c5bc27
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import torch
import uuid
import requests
import streamlit as st
from streamlit.logger import get_logger
from auto_gptq import AutoGPTQForCausalLM
from langchain import HuggingFacePipeline, PromptTemplate
from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from pdf2image import convert_from_path
from transformers import AutoTokenizer, TextStreamer, pipeline
from langchain.memory import ConversationBufferMemory
from gtts import gTTS
from io import BytesIO
from langchain.chains import ConversationalRetrievalChain
import streamlit.components.v1 as components
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.vectorstores.utils import filter_complex_metadata
import fitz
from PIL import Image
from langchain.vectorstores import FAISS
import transformers
from pydub import AudioSegment
from streamlit_extras.stateful_button import button

user_session_id = uuid.uuid4()

logger = get_logger(__name__)
st.set_page_config(page_title="Document QA by Dono", page_icon="🤖",  )
st.session_state.disabled = False
st.title("Document QA by Dono")
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"


@st.cache_data
def load_data():
    loader = PyPDFDirectoryLoader("/home/user/app/pdfs/")
    docs = loader.load()
    return docs

@st.cache_resource
def load_model(_docs):
    embeddings = HuggingFaceInstructEmbeddings(model_name="/home/user/app/all-MiniLM-L6-v2/",model_kwargs={"device":DEVICE})
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=256)
    texts = text_splitter.split_documents(docs)
    db = FAISS.from_documents(texts, embeddings)
    model_name_or_path = "/home/user/app/Llama-2-13B-chat-GPTQ/"
    model_basename = "model"

    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

    model = AutoGPTQForCausalLM.from_quantized(
        model_name_or_path,
        revision="gptq-8bit-128g-actorder_False",
        model_basename=model_basename,
        use_safetensors=True,
        trust_remote_code=True,
        inject_fused_attention=False,
        device=DEVICE,
        quantize_config=None,
    )

    DEFAULT_SYSTEM_PROMPT = """
    You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. 
    Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. 
    Please ensure that your responses are socially unbiased and positive in nature. 
    Always provide the citation for the answer from the text. 
    Try to include any section or subsection present in the text responsible for the answer. 
    Provide reference. Provide page number, section, sub section etc.
    If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. 
    Given a government document that outlines rules and regulations for a specific industry or sector, use your language model to answer questions about the rules and their applicability over time. 
    The document may include provisions that take effect at different times, such as immediately upon publication, after a grace period, or on a specific date in the future. 
    Your task is to identify the relevant rules and determine when they go into effect, taking into account any dependencies or exceptions that may apply.
    The current date is 14 September, 2023. Try to extract information which is closer to this date.
    Take a deep breath and work on this problem step-by-step. 
    """.strip()


    def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
        return f"""[INST] <<SYS>>{system_prompt}<</SYS>>{prompt} [/INST]""".strip()

    streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    text_pipeline = pipeline("text-generation",
                             model=model,
                             tokenizer=tokenizer,
                             max_new_tokens=1024,
                             temperature=0.2,
                             top_p=0.95,
                             repetition_penalty=1.15,
                             streamer=streamer,)
    llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0.2})

    SYSTEM_PROMPT = ("Use the following pieces of context to answer the question at the end. "
                     "If you don't know the answer, just say that you don't know, "
                     "don't try to make up an answer.")

    template = generate_prompt("""{context}  Question: {question} """,system_prompt=SYSTEM_PROMPT,) #Enter memory here!
    prompt = PromptTemplate(template=template, input_variables=["context",  "question"]) #Add history here
    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=db.as_retriever(search_kwargs={"k": 5}),
        return_source_documents=True,
        chain_type_kwargs={"prompt": prompt,
                           "verbose": False})

    print('load done')
    return qa_chain


model_name_or_path = "Llama-2-13B-chat-GPTQ"
model_basename = "model"

st.session_state["llm_model"] = model_name_or_path

if "messages" not in st.session_state:
    st.session_state.messages = []


for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])


def on_select():
    st.session_state.disabled = True


def get_message_history():
    for message in st.session_state.messages:
        role, content = message["role"], message["content"]
        yield f"{role.title()}: {content}"


docs = load_data()
qa_chain = load_model(docs)

if prompt := st.chat_input("How can I help you today?"):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)
    with st.chat_message("assistant"):
        message_placeholder = st.empty()
        full_response = ""
        message_history = "\n".join(list(get_message_history())[-3:])
        result = qa_chain(prompt)
        output = [result['result']]
        for item in output:
            full_response += item
            message_placeholder.markdown(full_response + "▌")
            message_placeholder.markdown(full_response)

    def generate_pdf():
        page_number = int(result['source_documents'][0].metadata['page'])
        doc = fitz.open(str(result['source_documents'][0].metadata['source']))
        text = str(result['source_documents'][0].page_content)
        if text != '':
            for page in doc:
                text_instances = page.search_for(text)
                for inst in text_instances:
                    highlight = page.add_highlight_annot(inst)
                    highlight.update()
        doc.save("/home/user/app/pdf2image/output.pdf", garbage=4, deflate=True, clean=True)
    
        def pdf_page_to_image(pdf_file, page_number, output_image):
            pdf_document = fitz.open(pdf_file)
            page = pdf_document[page_number]
            dpi = 300  # You can adjust this as needed
            pix = page.get_pixmap(matrix=fitz.Matrix(dpi / 100, dpi / 100))
            pix.save(output_image, "png")
            pdf_document.close()
        pdf_page_to_image('/home/user/app/pdf2image/output.pdf', page_number, '/home/user/app/pdf2image/output.png')
        #image = Image.open('/home/user/app/pdf2image/output.png')
        #message_placeholder.image(image)
        #st.session_state.reference = True
    
    
    
    def generate_audio():
        with open('/home/user/app/audio/audio.mp3','wb') as sound_file:
            tts = gTTS(result['result'], lang='en', tld='co.in')
            tts.write_to_fp(sound_file)
        sound = AudioSegment.from_mp3("/home/user/app/audio/audio.mp3")
        sound.export("/home/user/app/audio/audio.wav", format="wav")
    
    if "reference" not in st.session_state:
        st.session_state.reference = False
    if "audio" not in st.session_state:
        st.session_state.audio = False


    with st.sidebar:
        choice = st.radio("References and TTS",["Reference & TTS" ], index=None,)
        if choice == 'Reference & TTS':
            generate_pdf()
            st.session_state['reference'] = '/home/user/app/pdf2image/output.png'
            st.image(st.session_state['reference'])
            
            st.session_state.reference = True    
            with open('/home/user/app/audio/audio.mp3','wb') as sound_file:
                tts = gTTS(result['result'], lang='en', tld = 'co.in')
                tts.write_to_fp(sound_file)
            sound = AudioSegment.from_mp3("/home/user/app/audio/audio.mp3")
            sound.export("/home/user/app/audio/audio.wav", format="wav")
            st.session_state['audio'] = '/home/user/app/audio/audio.wav'
            st.audio(st.session_state['audio'])
        
    st.session_state.messages.append({"role": "assistant", "content": full_response})