|
import time |
|
print('1') |
|
print(time.time()) |
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import torch |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
os.system('nvidia-smi') |
|
|
|
import uuid |
|
|
|
import requests |
|
import streamlit as st |
|
from streamlit.logger import get_logger |
|
from auto_gptq import AutoGPTQForCausalLM |
|
from langchain import HuggingFacePipeline, PromptTemplate |
|
from langchain.chains import RetrievalQA |
|
from langchain.document_loaders import PyPDFDirectoryLoader |
|
from langchain.embeddings import HuggingFaceInstructEmbeddings |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.vectorstores import Chroma |
|
from pdf2image import convert_from_path |
|
from transformers import AutoTokenizer, TextStreamer, pipeline |
|
from langchain.memory import ConversationBufferMemory |
|
from gtts import gTTS |
|
from io import BytesIO |
|
from langchain.chains import ConversationalRetrievalChain |
|
import streamlit.components.v1 as components |
|
|
|
from langchain.document_loaders import UnstructuredMarkdownLoader |
|
from langchain.vectorstores.utils import filter_complex_metadata |
|
import fitz |
|
from PIL import Image |
|
from langchain.vectorstores import FAISS |
|
import transformers |
|
|
|
user_session_id = uuid.uuid4() |
|
|
|
logger = get_logger(__name__) |
|
st.set_page_config(page_title="Document QA by Dono", page_icon="🤖", ) |
|
st.session_state.disabled = False |
|
st.title("Document QA by Dono") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
@st.cache_data |
|
def load_data(): |
|
loader = PyPDFDirectoryLoader("/home/user/app/pdfs/") |
|
docs = loader.load() |
|
print(len(docs)) |
|
return docs |
|
|
|
|
|
|
|
@st.cache_resource |
|
def load_model(_docs): |
|
|
|
embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",model_kwargs={"device":DEVICE}) |
|
print(DEVICE) |
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=256) |
|
texts = text_splitter.split_documents(docs) |
|
|
|
print('embedding done') |
|
|
|
|
|
db = FAISS.from_documents(texts, embeddings) |
|
|
|
print('db done') |
|
|
|
|
|
model_name_or_path = "TheBloke/Llama-2-13B-chat-GPTQ" |
|
model_basename = "model" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) |
|
|
|
model = AutoGPTQForCausalLM.from_quantized( |
|
model_name_or_path, |
|
revision="gptq-8bit-128g-actorder_False", |
|
model_basename=model_basename, |
|
use_safetensors=True, |
|
trust_remote_code=True, |
|
inject_fused_attention=False, |
|
device=DEVICE, |
|
quantize_config=None, |
|
) |
|
|
|
print('model done') |
|
|
|
DEFAULT_SYSTEM_PROMPT = """ |
|
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. |
|
Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. |
|
Please ensure that your responses are socially unbiased and positive in nature. |
|
Always provide the citation for the answer from the text. |
|
Try to include any section or subsection present in the text responsible for the answer. |
|
Provide reference. Provide page number, section, sub section etc from which answer is taken. |
|
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. |
|
Given a government document that outlines rules and regulations for a specific industry or sector, use your language model to answer questions about the rules and their applicability over time. |
|
The document may include provisions that take effect at different times, such as immediately upon publication, after a grace period, or on a specific date in the future. |
|
Your task is to identify the relevant rules and determine when they go into effect, taking into account any dependencies or exceptions that may apply. |
|
The current date is 14 September, 2023. Try to extract information which is closer to this date and not in very past. |
|
Take a deep breath and work on this problem step-by-step. |
|
""".strip() |
|
|
|
|
|
def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str: |
|
return f"""[INST] <<SYS>>{system_prompt}<</SYS>>{prompt} [/INST]""".strip() |
|
|
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
text_pipeline = pipeline("text-generation",model=model,tokenizer=tokenizer,max_new_tokens=1024, |
|
temperature=0.2,top_p=0.95,repetition_penalty=1.15,streamer=streamer,) |
|
|
|
llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0.2}) |
|
|
|
print('llm done') |
|
|
|
SYSTEM_PROMPT = "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer." |
|
|
|
template = generate_prompt("""{context} Question: {question} """,system_prompt=SYSTEM_PROMPT,) |
|
|
|
prompt = PromptTemplate(template=template, input_variables=["context", "question"]) |
|
|
|
qa_chain = RetrievalQA.from_chain_type( |
|
llm=llm, |
|
chain_type="stuff", |
|
retriever=db.as_retriever(search_kwargs={"k": 5}), |
|
return_source_documents=True, |
|
chain_type_kwargs={"prompt": prompt, |
|
"verbose": False, |
|
|
|
|
|
|
|
|
|
},) |
|
|
|
print('load done') |
|
return qa_chain |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_name_or_path = "TheBloke/Llama-2-13B-chat-GPTQ" |
|
model_basename = "model" |
|
|
|
st.session_state["llm_model"] = model_name_or_path |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
|
|
def on_select(): |
|
st.session_state.disabled = True |
|
|
|
|
|
def get_message_history(): |
|
for message in st.session_state.messages: |
|
role, content = message["role"], message["content"] |
|
yield f"{role.title()}: {content}" |
|
|
|
|
|
docs = load_data() |
|
qa_chain = load_model(docs) |
|
|
|
|
|
|
|
|
|
print('2') |
|
print(time.time()) |
|
if prompt := st.chat_input("How can I help you today?"): |
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
with st.chat_message("assistant"): |
|
message_placeholder = st.empty() |
|
full_response = "" |
|
message_history = "\n".join(list(get_message_history())[-3:]) |
|
logger.info(f"{user_session_id} Message History: {message_history}") |
|
|
|
|
|
print('3') |
|
print(time.time()) |
|
result = qa_chain(prompt) |
|
print('4') |
|
print(time.time()) |
|
|
|
output = [result['result']] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print('5') |
|
print(time.time()) |
|
|
|
def generate_pdf(): |
|
page_number = int(result['source_documents'][0].metadata['page']) |
|
doc = fitz.open(str(result['source_documents'][0].metadata['source'])) |
|
|
|
text = str(result['source_documents'][0].page_content) |
|
if text != '': |
|
for page in doc: |
|
|
|
text_instances = page.search_for(text) |
|
|
|
|
|
for inst in text_instances: |
|
highlight = page.add_highlight_annot(inst) |
|
highlight.update() |
|
|
|
|
|
doc.save("/home/user/app/pdf2image/output.pdf", garbage=4, deflate=True, clean=True) |
|
|
|
|
|
|
|
def pdf_page_to_image(pdf_file, page_number, output_image): |
|
|
|
pdf_document = fitz.open(pdf_file) |
|
|
|
|
|
page = pdf_document[page_number] |
|
|
|
|
|
dpi = 300 |
|
|
|
|
|
pix = page.get_pixmap(matrix=fitz.Matrix(dpi / 100, dpi / 100)) |
|
|
|
|
|
pix.save(output_image, "png") |
|
|
|
|
|
pdf_document.close() |
|
|
|
|
|
pdf_page_to_image('/home/user/app/pdf2image/output.pdf', page_number, '/home/user/app/pdf2image/output.png') |
|
|
|
image = Image.open('/home/user/app/pdf2image/output.png') |
|
|
|
st.session_state.image_displayed = True |
|
return image |
|
|
|
def generate_audio(): |
|
sound_file = BytesIO() |
|
tts = gTTS(result['result'], lang='en') |
|
tts.write_to_fp(sound_file) |
|
|
|
st.session_state.sound_played = True |
|
return sound_file |
|
|
|
|
|
|
|
|
|
|
|
|
|
image_output = st.empty() |
|
sound_output = st.empty() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if "image_displayed" not in st.session_state: |
|
st.session_state.image_displayed = False |
|
if "sound_played" not in st.session_state: |
|
st.session_state.sound_played = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for item in output: |
|
full_response += item |
|
message_placeholder.markdown(full_response + "▌") |
|
message_placeholder.markdown(full_response) |
|
|
|
if st.sidebar.button("Display Image"): |
|
a=generate_pdf() |
|
message_placeholder.image(a) |
|
|
|
|
|
if st.sidebar.button("Play Sound"): |
|
x=generate_audio() |
|
message_placeholder.audio(x) |
|
|
|
st.session_state.messages.append({"role": "assistant", "content": full_response}) |
|
|
|
|
|
|
|
|