File size: 4,689 Bytes
f53f0d4
 
 
 
 
 
 
 
2b2d081
f53f0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import time
import re
import pandas as pd
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
from tokenizers import Tokenizer, AddedToken
import streamlit as st
from st_click_detector import click_detector

DEVICE = "cpu"
MODEL_OPTIONS = ["msmarco-distilbert-base-tas-b", "all-mpnet-base-v2"]
DESCRIPTION = """
# Semantic search

**Enter your query and hit enter**

Built with 🤗 Hugging Face's [transformers](https://huggingface.co/transformers/) library, [SentenceBert](https://www.sbert.net/) models, [Streamlit](https://streamlit.io/) and 44k movie descriptions from the Kaggle [Movies Dataset](https://www.kaggle.com/rounakbanik/the-movies-dataset)
"""


@st.cache(
    show_spinner=False,
    hash_funcs={
        AutoModel: lambda _: None,
        AutoTokenizer: lambda _: None,
        dict: lambda _: None,
    },
)
def load():
    models, tokenizers, embeddings = [], [], []
    for model_option in MODEL_OPTIONS:
        tokenizers.append(
            AutoTokenizer.from_pretrained(f"sentence-transformers/{model_option}")
        )
        models.append(
            AutoModel.from_pretrained(f"sentence-transformers/{model_option}").to(
                DEVICE
            )
        )
    embeddings.append(np.load("embeddings.npy"))
    embeddings.append(np.load("embeddings2.npy"))
    df = pd.read_csv("movies.csv")
    return tokenizers, models, embeddings, df


tokenizers, models, embeddings, df = load()


def pooling(model_output):
    return model_output.last_hidden_state[:, 0]


def compute_embeddings(texts):
    encoded_input = tokenizers[0](
        texts, padding=True, truncation=True, return_tensors="pt"
    ).to(DEVICE)

    with torch.no_grad():
        model_output = models[0](**encoded_input, return_dict=True)

    embeddings = pooling(model_output)

    return embeddings.cpu().numpy()


def pooling2(model_output, attention_mask):
    token_embeddings = model_output[0]
    input_mask_expanded = (
        attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    )
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
        input_mask_expanded.sum(1), min=1e-9
    )


def compute_embeddings2(list_of_strings):
    encoded_input = tokenizers[1](
        list_of_strings, padding=True, truncation=True, return_tensors="pt"
    ).to(DEVICE)
    with torch.no_grad():
        model_output = models[1](**encoded_input)
    sentence_embeddings = pooling2(model_output, encoded_input["attention_mask"])
    return F.normalize(sentence_embeddings, p=2, dim=1).cpu().numpy()


@st.cache(
    show_spinner=False,
    hash_funcs={Tokenizer: lambda _: None, AddedToken: lambda _: None},
)
def semantic_search(query, model_id):
    start = time.time()
    if len(query.strip()) == 0:
        return ""
    if "[Similar:" not in query:
        if model_id == 0:
            query_embedding = compute_embeddings([query])
        else:
            query_embedding = compute_embeddings2([query])
    else:
        match = re.match(r"\[Similar:(\d{1,5}).*", query)
        if match:
            idx = int(match.groups()[0])
            query_embedding = embeddings[model_id][idx : idx + 1, :]
            if query_embedding.shape[0] == 0:
                return ""
        else:
            return ""
    indices = np.argsort(embeddings[model_id] @ np.transpose(query_embedding)[:, 0])[
        -1:-11:-1
    ]
    if len(indices) == 0:
        return ""
    result = "<ol>"
    for i in indices:
        result += f"<li style='padding-top: 10px'><b>{df.iloc[i].title}</b> ({df.iloc[i].release_date}). {df.iloc[i].overview} "
        result += f"<a id='{i}' href='#'>Similar movies</a></li>"
    delay = "%.3f" % (time.time() - start)
    return f"<p><i>Computation time: {delay} seconds</i></p>{result}</ol>"


st.sidebar.markdown(DESCRIPTION)

model_choice = st.sidebar.selectbox("Similarity model", options=MODEL_OPTIONS)
model_id = 0 if model_choice == MODEL_OPTIONS[0] else 1

if "query" in st.session_state:
    query = st.text_input("", value=st.session_state["query"])
else:
    query = st.text_input("", value="time travel")

clicked = click_detector(semantic_search(query, model_id))

if clicked != "":
    change_query = False
    if "last_clicked" not in st.session_state:
        st.session_state["last_clicked"] = clicked
        change_query = True
    else:
        if clicked != st.session_state["last_clicked"]:
            st.session_state["last_clicked"] = clicked
            change_query = True
    if change_query:
        st.session_state["query"] = f"[Similar:{clicked}] {df.iloc[int(clicked)].title}"
        st.experimental_rerun()