vivym's picture
init
4a582ec
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Grad and Conn is refer to https://github.com/yucornetto/MGMatting/blob/main/code-base/utils/evaluate.py
# Output of `Grad` is sightly different from the MATLAB version provided by Adobe (less than 0.1%)
# Output of `Conn` is smaller than the MATLAB version (~5%, maybe MATLAB has a different algorithm)
# So do not report results calculated by these functions in your paper.
# Evaluate your inference with the MATLAB file `DIM_evaluation_code/evaluate.m`.
import cv2
import numpy as np
from scipy.ndimage import convolve
from scipy.special import gamma
from skimage.measure import label
class MSE:
"""
Only calculate the unknown region if trimap provided.
"""
def __init__(self):
self.mse_diffs = 0
self.count = 0
def update(self, pred, gt, trimap=None):
"""
update metric.
Args:
pred (np.ndarray): The value range is [0., 255.].
gt (np.ndarray): The value range is [0, 255].
trimap (np.ndarray, optional) The value is in {0, 128, 255}. Default: None.
"""
if trimap is None:
trimap = np.ones_like(gt) * 128
if not (pred.shape == gt.shape == trimap.shape):
raise ValueError(
'The shape of `pred`, `gt` and `trimap` should be equal. '
'but they are {}, {} and {}'.format(pred.shape, gt.shape,
trimap.shape))
pred[trimap == 0] = 0
pred[trimap == 255] = 255
mask = trimap == 128
pixels = float(mask.sum())
pred = pred / 255.
gt = gt / 255.
diff = (pred - gt) * mask
mse_diff = (diff**2).sum() / pixels if pixels > 0 else 0
self.mse_diffs += mse_diff
self.count += 1
return mse_diff
def evaluate(self):
mse = self.mse_diffs / self.count if self.count > 0 else 0
return mse
class SAD:
"""
Only calculate the unknown region if trimap provided.
"""
def __init__(self):
self.sad_diffs = 0
self.count = 0
def update(self, pred, gt, trimap=None):
"""
update metric.
Args:
pred (np.ndarray): The value range is [0., 255.].
gt (np.ndarray): The value range is [0., 255.].
trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None.
"""
if trimap is None:
trimap = np.ones_like(gt) * 128
if not (pred.shape == gt.shape == trimap.shape):
raise ValueError(
'The shape of `pred`, `gt` and `trimap` should be equal. '
'but they are {}, {} and {}'.format(pred.shape, gt.shape,
trimap.shape))
pred[trimap == 0] = 0
pred[trimap == 255] = 255
mask = trimap == 128
pred = pred / 255.
gt = gt / 255.
diff = (pred - gt) * mask
sad_diff = (np.abs(diff)).sum()
sad_diff /= 1000
self.sad_diffs += sad_diff
self.count += 1
return sad_diff
def evaluate(self):
sad = self.sad_diffs / self.count if self.count > 0 else 0
return sad
class Grad:
"""
Only calculate the unknown region if trimap provided.
Refer to: https://github.com/open-mlab/mmediting/blob/master/mmedit/core/evaluation/metrics.py
"""
def __init__(self):
self.grad_diffs = 0
self.count = 0
def gaussian(self, x, sigma):
return np.exp(-x**2 / (2 * sigma**2)) / (sigma * np.sqrt(2 * np.pi))
def dgaussian(self, x, sigma):
return -x * self.gaussian(x, sigma) / sigma**2
def gauss_filter(self, sigma, epsilon=1e-2):
half_size = np.ceil(
sigma * np.sqrt(-2 * np.log(np.sqrt(2 * np.pi) * sigma * epsilon)))
size = int(2 * half_size + 1)
# create filter in x axis
filter_x = np.zeros((size, size))
for i in range(size):
for j in range(size):
filter_x[i, j] = self.gaussian(
i - half_size, sigma) * self.dgaussian(j - half_size, sigma)
# normalize filter
norm = np.sqrt((filter_x**2).sum())
filter_x = filter_x / norm
filter_y = np.transpose(filter_x)
return filter_x, filter_y
def gauss_gradient(self, img, sigma):
filter_x, filter_y = self.gauss_filter(sigma)
img_filtered_x = cv2.filter2D(
img, -1, filter_x, borderType=cv2.BORDER_REPLICATE)
img_filtered_y = cv2.filter2D(
img, -1, filter_y, borderType=cv2.BORDER_REPLICATE)
return np.sqrt(img_filtered_x**2 + img_filtered_y**2)
def update(self, pred, gt, trimap=None, sigma=1.4):
"""
update metric.
Args:
pred (np.ndarray): The value range is [0., 1.].
gt (np.ndarray): The value range is [0, 255].
trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None.
sigma (float, optional): Standard deviation of the gaussian kernel. Default: 1.4.
"""
if trimap is None:
trimap = np.ones_like(gt) * 128
if not (pred.shape == gt.shape == trimap.shape):
raise ValueError(
'The shape of `pred`, `gt` and `trimap` should be equal. '
'but they are {}, {} and {}'.format(pred.shape, gt.shape,
trimap.shape))
pred[trimap == 0] = 0
pred[trimap == 255] = 255
gt = gt.squeeze()
pred = pred.squeeze()
gt = gt.astype(np.float64)
pred = pred.astype(np.float64)
gt_normed = np.zeros_like(gt)
pred_normed = np.zeros_like(pred)
cv2.normalize(gt, gt_normed, 1., 0., cv2.NORM_MINMAX)
cv2.normalize(pred, pred_normed, 1., 0., cv2.NORM_MINMAX)
gt_grad = self.gauss_gradient(gt_normed, sigma).astype(np.float32)
pred_grad = self.gauss_gradient(pred_normed, sigma).astype(np.float32)
grad_diff = ((gt_grad - pred_grad)**2 * (trimap == 128)).sum()
grad_diff /= 1000
self.grad_diffs += grad_diff
self.count += 1
return grad_diff
def evaluate(self):
grad = self.grad_diffs / self.count if self.count > 0 else 0
return grad
class Conn:
"""
Only calculate the unknown region if trimap provided.
Refer to: Refer to: https://github.com/open-mlab/mmediting/blob/master/mmedit/core/evaluation/metrics.py
"""
def __init__(self):
self.conn_diffs = 0
self.count = 0
def update(self, pred, gt, trimap=None, step=0.1):
"""
update metric.
Args:
pred (np.ndarray): The value range is [0., 1.].
gt (np.ndarray): The value range is [0, 255].
trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None.
step (float, optional): Step of threshold when computing intersection between
`gt` and `pred`. Default: 0.1.
"""
if trimap is None:
trimap = np.ones_like(gt) * 128
if not (pred.shape == gt.shape == trimap.shape):
raise ValueError(
'The shape of `pred`, `gt` and `trimap` should be equal. '
'but they are {}, {} and {}'.format(pred.shape, gt.shape,
trimap.shape))
pred[trimap == 0] = 0
pred[trimap == 255] = 255
gt = gt.squeeze()
pred = pred.squeeze()
gt = gt.astype(np.float32) / 255
pred = pred.astype(np.float32) / 255
thresh_steps = np.arange(0, 1 + step, step)
round_down_map = -np.ones_like(gt)
for i in range(1, len(thresh_steps)):
gt_thresh = gt >= thresh_steps[i]
pred_thresh = pred >= thresh_steps[i]
intersection = (gt_thresh & pred_thresh).astype(np.uint8)
# connected components
_, output, stats, _ = cv2.connectedComponentsWithStats(
intersection, connectivity=4)
# start from 1 in dim 0 to exclude background
size = stats[1:, -1]
# largest connected component of the intersection
omega = np.zeros_like(gt)
if len(size) != 0:
max_id = np.argmax(size)
# plus one to include background
omega[output == max_id + 1] = 1
mask = (round_down_map == -1) & (omega == 0)
round_down_map[mask] = thresh_steps[i - 1]
round_down_map[round_down_map == -1] = 1
gt_diff = gt - round_down_map
pred_diff = pred - round_down_map
# only calculate difference larger than or equal to 0.15
gt_phi = 1 - gt_diff * (gt_diff >= 0.15)
pred_phi = 1 - pred_diff * (pred_diff >= 0.15)
conn_diff = np.sum(np.abs(gt_phi - pred_phi) * (trimap == 128))
conn_diff /= 1000
self.conn_diffs += conn_diff
self.count += 1
return conn_diff
def evaluate(self):
conn = self.conn_diffs / self.count if self.count > 0 else 0
return conn