Spaces:
Runtime error
Runtime error
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Grad and Conn is refer to https://github.com/yucornetto/MGMatting/blob/main/code-base/utils/evaluate.py | |
# Output of `Grad` is sightly different from the MATLAB version provided by Adobe (less than 0.1%) | |
# Output of `Conn` is smaller than the MATLAB version (~5%, maybe MATLAB has a different algorithm) | |
# So do not report results calculated by these functions in your paper. | |
# Evaluate your inference with the MATLAB file `DIM_evaluation_code/evaluate.m`. | |
import cv2 | |
import numpy as np | |
from scipy.ndimage import convolve | |
from scipy.special import gamma | |
from skimage.measure import label | |
class MSE: | |
""" | |
Only calculate the unknown region if trimap provided. | |
""" | |
def __init__(self): | |
self.mse_diffs = 0 | |
self.count = 0 | |
def update(self, pred, gt, trimap=None): | |
""" | |
update metric. | |
Args: | |
pred (np.ndarray): The value range is [0., 255.]. | |
gt (np.ndarray): The value range is [0, 255]. | |
trimap (np.ndarray, optional) The value is in {0, 128, 255}. Default: None. | |
""" | |
if trimap is None: | |
trimap = np.ones_like(gt) * 128 | |
if not (pred.shape == gt.shape == trimap.shape): | |
raise ValueError( | |
'The shape of `pred`, `gt` and `trimap` should be equal. ' | |
'but they are {}, {} and {}'.format(pred.shape, gt.shape, | |
trimap.shape)) | |
pred[trimap == 0] = 0 | |
pred[trimap == 255] = 255 | |
mask = trimap == 128 | |
pixels = float(mask.sum()) | |
pred = pred / 255. | |
gt = gt / 255. | |
diff = (pred - gt) * mask | |
mse_diff = (diff**2).sum() / pixels if pixels > 0 else 0 | |
self.mse_diffs += mse_diff | |
self.count += 1 | |
return mse_diff | |
def evaluate(self): | |
mse = self.mse_diffs / self.count if self.count > 0 else 0 | |
return mse | |
class SAD: | |
""" | |
Only calculate the unknown region if trimap provided. | |
""" | |
def __init__(self): | |
self.sad_diffs = 0 | |
self.count = 0 | |
def update(self, pred, gt, trimap=None): | |
""" | |
update metric. | |
Args: | |
pred (np.ndarray): The value range is [0., 255.]. | |
gt (np.ndarray): The value range is [0., 255.]. | |
trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None. | |
""" | |
if trimap is None: | |
trimap = np.ones_like(gt) * 128 | |
if not (pred.shape == gt.shape == trimap.shape): | |
raise ValueError( | |
'The shape of `pred`, `gt` and `trimap` should be equal. ' | |
'but they are {}, {} and {}'.format(pred.shape, gt.shape, | |
trimap.shape)) | |
pred[trimap == 0] = 0 | |
pred[trimap == 255] = 255 | |
mask = trimap == 128 | |
pred = pred / 255. | |
gt = gt / 255. | |
diff = (pred - gt) * mask | |
sad_diff = (np.abs(diff)).sum() | |
sad_diff /= 1000 | |
self.sad_diffs += sad_diff | |
self.count += 1 | |
return sad_diff | |
def evaluate(self): | |
sad = self.sad_diffs / self.count if self.count > 0 else 0 | |
return sad | |
class Grad: | |
""" | |
Only calculate the unknown region if trimap provided. | |
Refer to: https://github.com/open-mlab/mmediting/blob/master/mmedit/core/evaluation/metrics.py | |
""" | |
def __init__(self): | |
self.grad_diffs = 0 | |
self.count = 0 | |
def gaussian(self, x, sigma): | |
return np.exp(-x**2 / (2 * sigma**2)) / (sigma * np.sqrt(2 * np.pi)) | |
def dgaussian(self, x, sigma): | |
return -x * self.gaussian(x, sigma) / sigma**2 | |
def gauss_filter(self, sigma, epsilon=1e-2): | |
half_size = np.ceil( | |
sigma * np.sqrt(-2 * np.log(np.sqrt(2 * np.pi) * sigma * epsilon))) | |
size = int(2 * half_size + 1) | |
# create filter in x axis | |
filter_x = np.zeros((size, size)) | |
for i in range(size): | |
for j in range(size): | |
filter_x[i, j] = self.gaussian( | |
i - half_size, sigma) * self.dgaussian(j - half_size, sigma) | |
# normalize filter | |
norm = np.sqrt((filter_x**2).sum()) | |
filter_x = filter_x / norm | |
filter_y = np.transpose(filter_x) | |
return filter_x, filter_y | |
def gauss_gradient(self, img, sigma): | |
filter_x, filter_y = self.gauss_filter(sigma) | |
img_filtered_x = cv2.filter2D( | |
img, -1, filter_x, borderType=cv2.BORDER_REPLICATE) | |
img_filtered_y = cv2.filter2D( | |
img, -1, filter_y, borderType=cv2.BORDER_REPLICATE) | |
return np.sqrt(img_filtered_x**2 + img_filtered_y**2) | |
def update(self, pred, gt, trimap=None, sigma=1.4): | |
""" | |
update metric. | |
Args: | |
pred (np.ndarray): The value range is [0., 1.]. | |
gt (np.ndarray): The value range is [0, 255]. | |
trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None. | |
sigma (float, optional): Standard deviation of the gaussian kernel. Default: 1.4. | |
""" | |
if trimap is None: | |
trimap = np.ones_like(gt) * 128 | |
if not (pred.shape == gt.shape == trimap.shape): | |
raise ValueError( | |
'The shape of `pred`, `gt` and `trimap` should be equal. ' | |
'but they are {}, {} and {}'.format(pred.shape, gt.shape, | |
trimap.shape)) | |
pred[trimap == 0] = 0 | |
pred[trimap == 255] = 255 | |
gt = gt.squeeze() | |
pred = pred.squeeze() | |
gt = gt.astype(np.float64) | |
pred = pred.astype(np.float64) | |
gt_normed = np.zeros_like(gt) | |
pred_normed = np.zeros_like(pred) | |
cv2.normalize(gt, gt_normed, 1., 0., cv2.NORM_MINMAX) | |
cv2.normalize(pred, pred_normed, 1., 0., cv2.NORM_MINMAX) | |
gt_grad = self.gauss_gradient(gt_normed, sigma).astype(np.float32) | |
pred_grad = self.gauss_gradient(pred_normed, sigma).astype(np.float32) | |
grad_diff = ((gt_grad - pred_grad)**2 * (trimap == 128)).sum() | |
grad_diff /= 1000 | |
self.grad_diffs += grad_diff | |
self.count += 1 | |
return grad_diff | |
def evaluate(self): | |
grad = self.grad_diffs / self.count if self.count > 0 else 0 | |
return grad | |
class Conn: | |
""" | |
Only calculate the unknown region if trimap provided. | |
Refer to: Refer to: https://github.com/open-mlab/mmediting/blob/master/mmedit/core/evaluation/metrics.py | |
""" | |
def __init__(self): | |
self.conn_diffs = 0 | |
self.count = 0 | |
def update(self, pred, gt, trimap=None, step=0.1): | |
""" | |
update metric. | |
Args: | |
pred (np.ndarray): The value range is [0., 1.]. | |
gt (np.ndarray): The value range is [0, 255]. | |
trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None. | |
step (float, optional): Step of threshold when computing intersection between | |
`gt` and `pred`. Default: 0.1. | |
""" | |
if trimap is None: | |
trimap = np.ones_like(gt) * 128 | |
if not (pred.shape == gt.shape == trimap.shape): | |
raise ValueError( | |
'The shape of `pred`, `gt` and `trimap` should be equal. ' | |
'but they are {}, {} and {}'.format(pred.shape, gt.shape, | |
trimap.shape)) | |
pred[trimap == 0] = 0 | |
pred[trimap == 255] = 255 | |
gt = gt.squeeze() | |
pred = pred.squeeze() | |
gt = gt.astype(np.float32) / 255 | |
pred = pred.astype(np.float32) / 255 | |
thresh_steps = np.arange(0, 1 + step, step) | |
round_down_map = -np.ones_like(gt) | |
for i in range(1, len(thresh_steps)): | |
gt_thresh = gt >= thresh_steps[i] | |
pred_thresh = pred >= thresh_steps[i] | |
intersection = (gt_thresh & pred_thresh).astype(np.uint8) | |
# connected components | |
_, output, stats, _ = cv2.connectedComponentsWithStats( | |
intersection, connectivity=4) | |
# start from 1 in dim 0 to exclude background | |
size = stats[1:, -1] | |
# largest connected component of the intersection | |
omega = np.zeros_like(gt) | |
if len(size) != 0: | |
max_id = np.argmax(size) | |
# plus one to include background | |
omega[output == max_id + 1] = 1 | |
mask = (round_down_map == -1) & (omega == 0) | |
round_down_map[mask] = thresh_steps[i - 1] | |
round_down_map[round_down_map == -1] = 1 | |
gt_diff = gt - round_down_map | |
pred_diff = pred - round_down_map | |
# only calculate difference larger than or equal to 0.15 | |
gt_phi = 1 - gt_diff * (gt_diff >= 0.15) | |
pred_phi = 1 - pred_diff * (pred_diff >= 0.15) | |
conn_diff = np.sum(np.abs(gt_phi - pred_phi) * (trimap == 128)) | |
conn_diff /= 1000 | |
self.conn_diffs += conn_diff | |
self.count += 1 | |
return conn_diff | |
def evaluate(self): | |
conn = self.conn_diffs / self.count if self.count > 0 else 0 | |
return conn | |