File size: 4,120 Bytes
183919f
ff605cf
b808c95
ff605cf
 
183919f
b808c95
93d65f4
052cf0e
ff605cf
 
93d65f4
 
 
 
052cf0e
93d65f4
ff605cf
 
5c7957c
ff605cf
 
 
052cf0e
 
 
 
 
 
 
ff605cf
 
3136bf7
ff605cf
 
b808c95
ff605cf
b808c95
ff605cf
59d0659
 
052cf0e
 
 
ff605cf
 
052cf0e
ff605cf
 
0ad7527
b808c95
 
0ad7527
b808c95
ff605cf
 
 
 
 
b808c95
 
 
 
 
 
 
 
 
 
 
 
 
 
ff605cf
 
b808c95
 
 
ff605cf
b808c95
 
9d5a832
 
 
 
 
 
 
 
 
93d65f4
 
9d5a832
 
 
 
 
93d65f4
9d5a832
 
 
 
ff605cf
 
b808c95
ff605cf
b808c95
ff605cf
b808c95
ff605cf
b808c95
 
 
 
 
 
 
 
 
 
ff605cf
b808c95
 
 
 
 
 
 
 
 
ff605cf
 
 
 
 
 
 
 
 
 
 
0ad7527
ff605cf
 
b808c95
 
 
 
 
 
 
 
 
 
 
 
 
0dd9ebd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os 
import cv2
import torch
import traceback
import numpy as np
import gradio as gr
from itertools import chain
from huggingface_hub import hf_hub_download
from segment_anything import SamPredictor, sam_model_registry


hf_hub_download(repo_id="vmoras/sam_api", filename="sam_vit_h.pth")


sam_checkpoint = "sam_vit_h.pth"
model_type = "vit_h"
device = 'cuda' if torch.cuda.is_available() else 'cpu'


def set_predictor(image):
    """
    Creates a Sam predictor object based on a given image and model.
    """
    sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
    sam.to(device=device)

    predictor = SamPredictor(sam)
    predictor.set_image(image)

    return [image, predictor, 'Done']


def get_polygon(points, image, predictor):
    """
    Returns the points of the polygon given a bounding box and a prediction
    made by Sam.
    """
    points = list(chain.from_iterable(points))

    input_box = np.array(points)

    masks, _, _ = predictor.predict(
        box=input_box[None, :],
        multimask_output=False,
    )

    img = masks[0].astype(np.uint8)
    contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    if len(contours) == 0:
        return [], img

    points = contours[0]

    polygon = []
    for point in points:
        for x, y in point:
            polygon.append([int(x), int(y)])

    mask = np.zeros(image.shape, dtype='uint8')
    poly = np.array(polygon)
    cv2.fillPoly(mask, [poly], (0, 255, 0))

    return polygon, mask


def add_bbox(bbox, evt: gr.SelectData):
    if bbox[0] == [0, 0]:
        bbox[0] = [evt.index[0], evt.index[1]]
        return bbox, bbox

    bbox[1] = [evt.index[0], evt.index[1]]
    return bbox, bbox


def clear_bbox(bbox):
    updated_bbox = [[0, 0], [0, 0]]
    return updated_bbox, updated_bbox


with gr.Blocks() as demo:
    gr.Markdown(
    """
    # Instructions
    1. Upload the image and press 'Send Image'
    2. Wait until the word 'Done' appears on the 'Status' box
    3. Click on the image where the upper left corner of the bbox should be
    4. Click on the image where the lower right corner of the bbox should be
    5. Check the coordinates using the 'bbox' box
    6. Click on 'Send bounding box'
    7. On the right side you will see the binary mask 路
    8. on the lower side you will see the points that made up the polygon 路
    9. Click on 'Clear bbox' to send another bounding box and repeat the steps from the thrid point
    10. Repeat steps 3 to 9 until all the segments for this image are done
    11. Click on the right corner of the image to remove it and repeat all the steps with the next 
    image

    路 If the binary mask is all black and the polygon is an empty list, it means the program did 
    not find any segment in the bbox. Make the bbox a little big bigger if that happens.
    """)


    image = gr.State()
    embedding = gr.State()
    bbox = gr.State([[0, 0], [0, 0]])

    with gr.Row():
        input_image = gr.Image(label='Image')
        mask = gr.Image(label='Mask')

    with gr.Row():
        with gr.Column():
            output_status = gr.Textbox(label='Status')
            
        with gr.Column():            
            predictor_button = gr.Button('Send Image')
 
    with gr.Row():
        with gr.Column():
            bbox_box = gr.Textbox(label="bbox")

        with gr.Column():
            bbox_button = gr.Button('Clear bbox')

    with gr.Row():
        with gr.Column():
            polygon = gr.Textbox(label='Polygon')

        with gr.Column():
            points_button = gr.Button('Send bounding box')


    predictor_button.click(
        set_predictor, 
        input_image,
        [image, embedding, output_status],
    )

    points_button.click(
        get_polygon, 
        [bbox, image, embedding],
        [polygon, mask],
    )

    bbox_button.click(
        clear_bbox, 
        bbox,
        [bbox, bbox_box],
    )    

    input_image.select(
        add_bbox,
        bbox,
        [bbox, bbox_box]
    )


demo.launch(debug=True, auth=(os.environ['user'], os.environ['password']))