File size: 4,231 Bytes
183919f d11a4d2 ff605cf b808c95 ff605cf 183919f b808c95 93d65f4 052cf0e ff605cf f503e37 93d65f4 f503e37 052cf0e 93d65f4 ff605cf 5c7957c ff605cf 052cf0e 28bb343 d11a4d2 28bb343 052cf0e ff605cf 3136bf7 ff605cf b808c95 ff605cf b808c95 ff605cf 59d0659 052cf0e ff605cf 052cf0e ff605cf 0ad7527 b808c95 0ad7527 b808c95 ff605cf b808c95 ff605cf b808c95 ff605cf b808c95 9d5a832 602a983 71c636f 9d5a832 ff605cf b808c95 ff605cf b808c95 ff605cf b808c95 ff605cf b808c95 ff605cf b808c95 ff605cf 0ad7527 ff605cf b808c95 5efdfc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import os
import gc
import cv2
import torch
import traceback
import numpy as np
import gradio as gr
from itertools import chain
from huggingface_hub import hf_hub_download
from segment_anything import SamPredictor, sam_model_registry
#hf_hub_download(repo_id="vmoras/sam_api", filename="sam_vit_h.pth", token=os.environ.get('model_token'), local_dir="./")
sam_checkpoint = "sam_vit_h_0.pth"
model_type = "vit_h"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def set_predictor(image):
"""
Creates a Sam predictor object based on a given image and model.
"""
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)
predictor.set_image(image)
if device == 'cuda':
gc.collect()
torch.cuda.empty_cache()
return [image, predictor, 'Done']
def get_polygon(points, image, predictor):
"""
Returns the points of the polygon given a bounding box and a prediction
made by Sam.
"""
points = list(chain.from_iterable(points))
input_box = np.array(points)
masks, _, _ = predictor.predict(
box=input_box[None, :],
multimask_output=False,
)
img = masks[0].astype(np.uint8)
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) == 0:
return [], img
points = contours[0]
polygon = []
for point in points:
for x, y in point:
polygon.append([int(x), int(y)])
mask = np.zeros(image.shape, dtype='uint8')
poly = np.array(polygon)
cv2.fillPoly(mask, [poly], (0, 255, 0))
return polygon, mask
def add_bbox(bbox, evt: gr.SelectData):
if bbox[0] == [0, 0]:
bbox[0] = [evt.index[0], evt.index[1]]
return bbox, bbox
bbox[1] = [evt.index[0], evt.index[1]]
return bbox, bbox
def clear_bbox(bbox):
updated_bbox = [[0, 0], [0, 0]]
return updated_bbox, updated_bbox
with gr.Blocks() as demo:
gr.Markdown(
"""
# Instructions
1. Upload the image and press 'Send Image'.
2. Wait until the word 'Done' appears on the 'Status' box.
3. Click on the image where the upper left corner of the bbox should be.
4. Click on the image where the lower right corner of the bbox should be.
5. Check the coordinates using the 'bbox' box.
6. Click on 'Send bounding box'.
7. On the right side you will see the binary mask '\*'.
8. On the lower side you will see the points that made up the polygon '\*'.
9. Click on 'Clear bbox' to send another bounding box and repeat the steps from the thrid step.
10. Repeat steps 3 to 9 until all the segments for this image are done.
11. Click on the right corner of the image to remove it and repeat all the steps with the next
image.
'\*' If the binary mask is all black and the polygon is an empty list, it means the program did
not find any segment in the bbox. Make the bbox a little big bigger if that happens.
""")
image = gr.State()
embedding = gr.State()
bbox = gr.State([[0, 0], [0, 0]])
with gr.Row():
input_image = gr.Image(label='Image')
mask = gr.Image(label='Mask')
with gr.Row():
with gr.Column():
output_status = gr.Textbox(label='Status')
with gr.Column():
predictor_button = gr.Button('Send Image')
with gr.Row():
with gr.Column():
bbox_box = gr.Textbox(label="bbox")
with gr.Column():
bbox_button = gr.Button('Clear bbox')
with gr.Row():
with gr.Column():
polygon = gr.Textbox(label='Polygon')
with gr.Column():
points_button = gr.Button('Send bounding box')
predictor_button.click(
set_predictor,
input_image,
[image, embedding, output_status],
)
points_button.click(
get_polygon,
[bbox, image, embedding],
[polygon, mask],
)
bbox_button.click(
clear_bbox,
bbox,
[bbox, bbox_box],
)
input_image.select(
add_bbox,
bbox,
[bbox, bbox_box]
)
demo.launch(debug=True) |