ner_app / app.py
vonewman's picture
Update app.py
bbf7868
raw
history blame
4.23 kB
import streamlit as st
import pandas as pd
import numpy as np
import re
import json
import base64
import uuid
import transformers
from datasets import Dataset,load_dataset, load_from_disk
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer
st.set_page_config(
page_title="Named Entity Recognition Wolof", page_icon="πŸ“˜"
)
def convert_df(df:pd.DataFrame):
return df.to_csv(index=False).encode('utf-8')
#@st.cache
def convert_json(df:pd.DataFrame):
result = df.to_json(orient="index")
parsed = json.loads(result)
json_string = json.dumps(parsed)
#st.json(json_string, expanded=True)
return json_string
st.title("πŸ“˜Named Entity Recognition Wolof")
@st.cache(allow_output_mutation=True)
def load_model():
model = AutoModelForTokenClassification.from_pretrained("vonewman/wolof-finetuned-ner")
trainer = Trainer(model=model)
tokenizer = AutoTokenizer.from_pretrained("vonewman/wolof-finetuned-ner")
return trainer, model, tokenizer
id2tag = {0: 'O',
1: 'B-LOC',
2: 'B-PER',
3: 'I-PER',
4: 'B-ORG',
5: 'I-DATE',
6: 'B-DATE',
7: 'I-ORG',
8: 'I-LOC'
}
def tag_sentence(text:str):
# convert our text to a tokenized sequence
inputs = tokenizer(text, truncation=True, return_tensors="pt")
# get outputs
outputs = model(**inputs)
# convert to probabilities with softmax
probs = outputs[0][0].softmax(1)
# get the tags with the highest probability
word_tags = [(tokenizer.decode(inputs['input_ids'][0][i].item()), id2tag[tagid.item()], np.round(probs[i][tagid].item() *100,2) )
for i, tagid in enumerate (probs.argmax(axis=1))]
df=pd.DataFrame(word_tags, columns=['word', 'tag', 'probability'])
return df
with st.form(key='my_form'):
x1 = st.text_input(label='Enter a sentence:', max_chars=250)
print(x1)
submit_button = st.form_submit_button(label='🏷️ Create tags')
if submit_button:
if re.sub('\s+','',x1)=='':
st.error('Please enter a non-empty sentence.')
elif re.match(r'\A\s*\w+\s*\Z', x1):
st.error("Please enter a sentence with at least one word")
else:
st.markdown("### Tagged Sentence")
st.header("")
Trainer, model, tokenizer = load_model()
results=tag_sentence(x1)
cs, c1, c2, c3, cLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
with c1:
#csvbutton = download_button(results, "results.csv", "πŸ“₯ Download .csv")
csvbutton = st.download_button(label="πŸ“₯ Download .csv", data=convert_df(results),
file_name= "results.csv", mime='text/csv', key='csv')
with c2:
#textbutton = download_button(results, "results.txt", "πŸ“₯ Download .txt")
textbutton = st.download_button(label="πŸ“₯ Download .txt", data=convert_df(results),
file_name= "results.text", mime='text/plain', key='text')
with c3:
#jsonbutton = download_button(results, "results.json", "πŸ“₯ Download .json")
jsonbutton = st.download_button(label="πŸ“₯ Download .json", data=convert_json(results),
file_name= "results.json", mime='application/json', key='json')
st.header("")
c1, c2, c3 = st.columns([1, 3, 1])
with c2:
st.table(results.style.background_gradient(subset=['probability']).format(precision=2))
st.header("")
st.header("")
st.header("")
with st.expander("ℹ️ - About this app", expanded=True):
st.write(
"""
- The **Named Entity Recognition Wolof** app is a tool that performs named entity recognition in Wolof.
- The available entitites are: *corporation*, *location*, *person* and *date*.
- The app uses the [XLMRoberta model](https://huggingface.co/xlm-roberta-base), fine-tuned on the [masakhaNER](https://huggingface.co/datasets/masakhane/masakhaner2) dataset.
- The model uses the **byte-level BPE tokenizer**. Each sentece is first tokenized.
"""
)