wasm-speeker-sa / app.py
wasmdashai's picture
Update app.py
dcd43ca verified
import os
import numpy as np
import gradio as gr
import requests
from genai_chat_ai import AI,create_chat_session
import torch
from typing import Any, Callable, Optional, Tuple, Union,Iterator
import numpy as np
import torch.nn as nn # Import the missing module
import noisereduce as nr
def remove_noise_nr(audio_data,sr=16000):
"""يزيل الضوضاء باستخدام مكتبة noisereduce."""
reduced_noise = nr.reduce_noise(y=audio_data, sr=sr)
return reduced_noise
def _inference_forward_stream(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
speaker_embeddings: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
padding_mask: Optional[torch.Tensor] = None,
chunk_size: int = 32, # Chunk size for streaming output
) -> Iterator[torch.Tensor]:
"""Generates speech waveforms in a streaming fashion."""
if attention_mask is not None:
padding_mask = attention_mask.unsqueeze(-1).float()
else:
padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
text_encoder_output = self.text_encoder(
input_ids=input_ids,
padding_mask=padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
hidden_states = hidden_states.transpose(1, 2)
input_padding_mask = padding_mask.transpose(1, 2)
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
if self.config.use_stochastic_duration_prediction:
log_duration = self.duration_predictor(
hidden_states,
input_padding_mask,
speaker_embeddings,
reverse=True,
noise_scale=self.noise_scale_duration,
)
else:
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
length_scale = 1.0 / self.speaking_rate
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
batch_size, _, output_length, input_length = attn_mask.shape
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
valid_indices = indices.unsqueeze(0) < cum_duration
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
# Expand prior distribution
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
spectrogram = latents * output_padding_mask
for i in range(0, spectrogram.size(-1), chunk_size):
with torch.no_grad():
wav=self.decoder(spectrogram[:,:,i : i + chunk_size] ,speaker_embeddings)
yield wav.squeeze().cpu().numpy()
api_key = os.environ.get("Id_mode_vits")
headers = {"Authorization": f"Bearer {api_key}"}
from transformers import AutoTokenizer,VitsModel
import torch
models= {}
tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-ar-sa-huba",token=api_key)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_model(name_model):
global models
if name_model in models:
return models[name_model]
models[name_model]=VitsModel.from_pretrained(name_model,token=api_key).to(device)
models[name_model].decoder.apply_weight_norm()
# torch.nn.utils.weight_norm(self.decoder.conv_pre)
# torch.nn.utils.weight_norm(self.decoder.conv_post)
for flow in models[name_model].flow.flows:
torch.nn.utils.weight_norm(flow.conv_pre)
torch.nn.utils.weight_norm(flow.conv_post)
return models[name_model]
def genrate_speech(text,name_model):
inputs=tokenizer(text,return_tensors="pt")
model=get_model(name_model)
with torch.no_grad():
wav=model(
input_ids= inputs.input_ids.to(device),
attention_mask=inputs.attention_mask.to(device),
speaker_id=0
).waveform.cpu().numpy().reshape(-1)
return model.config.sampling_rate,wav
def generate_audio(text,name_model,speaker_id=None):
inputs = tokenizer(text, return_tensors="pt")#.input_ids
speaker_embeddings = None
model=get_model(name_model)
#torch.cuda.empty_cache()
with torch.no_grad():
for chunk in _inference_forward_stream(model,input_ids=inputs.input_ids,attention_mask=inputs.attention_mask,speaker_embeddings= speaker_embeddings,chunk_size=256):
yield 16000,chunk#.squeeze().cpu().numpy()#.astype(np.int16).tobytes()
def generate_audio_ai(text,name_model):
text_answer = get_answer_ai(text)
text_answer = remove_extra_spaces(text_answer)
inputs = tokenizer(text_answer, return_tensors="pt")#.input_ids
speaker_embeddings = None
model=get_model(name_model)
#torch.cuda.empty_cache()
with torch.no_grad():
for chunk in _inference_forward_stream(model,input_ids=inputs.input_ids,attention_mask=inputs.attention_mask,speaker_embeddings= speaker_embeddings,chunk_size=256):
yield 16000,remove_noise_nr(chunk)#.cpu().numpy().squeeze()#.astype(np.int16).tobytes()
def remove_extra_spaces(text):
return ' '.join(text.split())
def query(text,API_URL):
payload={"inputs": text}
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
def get_answer_ai(text):
global AI
try:
response = AI.send_message(text)
return response.text
except :
AI=create_chat_session()
response = AI.send_message(text)
return response.text
def get_answer_ai_stream(text):
#if session_ai is None:
global AI
try:
response = AI.send_message(text,stream=True)
return response
except :
AI=create_chat_session()
response = AI.send_message(text,stream=True)
return response
def t2t(text):
return get_answer_ai(text)
def t2tstream(text):
st=''
response=get_answer_ai_stream(text)
for chk in response:
st+=chk.text
yield st
def t2s(text,name_model):
return genrate_speech(text,name_model)
#return get_answer_ai(text)
def home_page():
return """
<div class="px-4 py-5 my-5 text-center">
<img class="d-block mx-auto mb-4" src="https://huggingface.co/spaces/wasmdashai/wasm-speeker-sa/resolve/main/%D8%AA%D9%86%D8%B2%D9%8A%D9%84%20(2).jpeg" alt="" width="72" height="57">
<h1 class="display-5 fw-bold">مرحباً بك في Wasm-Speeker</h1>
<div class="col-lg-6 mx-auto">
<p class="lead mb-4">
Wasm-Speeker هو إطار متقدم يعتمد على تقنيات الذكاء الاصطناعي لتوليد الكلام من النصوص.
تعتمد جميع النماذج على بنية VITS، التي تتيح توليد موجات صوتية واقعية بناءً على المدخلات النصية.
النماذج تحتوي على محولات لتحليل النص وتوليد الكلام بناءً على خصائص الصوت المحلية لكل لهجة.
</p>
<div class="d-grid gap-2 d-sm-flex justify-content-sm-center">
<button type="button" class="btn btn-primary btn-lg px-4 gap-3">Primary button</button>
<button type="button" class="btn btn-outline-secondary btn-lg px-4">Secondary</button>
</div>
</div>
</div>
"""
def footer():
body="""<div class="container col-xxl-8 px-4 py-5">
<div class="row flex-lg-row-reverse align-items-center g-5 py-5">
<div class="col-10 col-sm-8 col-lg-6">
<img src="https://huggingface.co/spaces/wasmdashai/wasm-speeker-sa/resolve/main/%D8%AA%D9%86%D8%B2%D9%8A%D9%84%20(3).jpeg" class="d-block mx-lg-auto img-fluid" alt="Bootstrap Themes" width="700" height="500" loading="lazy">
</div>
<div class="col-lg-6">
<h1 class="display-5 fw-bold lh-1 mb-3">Responsive left-aligned hero with image</h1>
<p class="lead">Quickly design and customize responsive mobile-first sites with Bootstrap, the world’s most popular front-end open source toolkit, featuring Sass variables and mixins, responsive grid system, extensive prebuilt components, and powerful JavaScript plugins.</p>
<div class="d-grid gap-2 d-md-flex justify-content-md-start">
<button type="button" class="btn btn-primary btn-lg px-4 me-md-2">Primary</button>
<button type="button" class="btn btn-outline-secondary btn-lg px-4">Default</button>
</div>
</div>
</div>
</div>
<div class="row p-4 pb-0 pe-lg-0 pt-lg-5 align-items-center rounded-3 border shadow-lg">
<div class="col-lg-7 p-3 p-lg-5 pt-lg-3">
<h1 class="display-4 fw-bold lh-1">Border hero with cropped image and shadows</h1>
<p class="lead">Quickly design and customize responsive mobile-first sites with Bootstrap, the world’s most popular front-end open source toolkit, featuring Sass variables and mixins, responsive grid system, extensive prebuilt components, and powerful JavaScript plugins.</p>
<div class="d-grid gap-2 d-md-flex justify-content-md-start mb-4 mb-lg-3">
<button type="button" class="btn btn-primary btn-lg px-4 me-md-2 fw-bold">Primary</button>
<button type="button" class="btn btn-outline-secondary btn-lg px-4">Default</button>
</div>
</div>
<div class="col-lg-4 offset-lg-1 p-0 overflow-hidden shadow-lg">
<img class="rounded-lg-3" src="https://huggingface.co/spaces/wasmdashai/wasm-speeker-sa/resolve/main/%D8%AA%D9%86%D8%B2%D9%8A%D9%84%20(5).jpeg" alt="" width="720">
</div>
</div>
<div class="bg-dark text-secondary px-4 py-5 text-center">
<div >
<h1 class="display-5 fw-bold text-white">Dark mode hero</h1>
<div class="col-lg-6 mx-auto">
<p class="fs-5 mb-4">Quickly design and customize responsive mobile-first sites with Bootstrap, the world’s most popular front-end open source toolkit, featuring Sass variables and mixins, responsive grid system, extensive prebuilt components, and powerful JavaScript plugins.</p>
<div class="d-grid gap-2 d-sm-flex justify-content-sm-center">
<button type="button" class="btn btn-outline-info btn-lg px-4 me-sm-3 fw-bold">Custom button</button>
<button type="button" class="btn btn-outline-light btn-lg px-4">Secondary</button>
</div>
</div>
</div>
</div>"""
return body
import gradio as gr
import os
import plotly.express as px
# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.
def random_plot():
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species",
size='petal_length', hover_data=['petal_width'])
return fig
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
from gradio_multimodalchatbot import MultimodalChatbot
from gradio.data_classes import FileData
import tempfile
import soundfile as sf
from gradio_client import Client
def add_message(history, message):
for x in message["files"]:
history.append(((x,), None))
if message["text"] is not None:
history.append((message["text"], None))
response_audio = genrate_speech(message["text"],'wasmdashai/vits-ar-sa-huba')
history.append((gr.Audio(response_audio,scale=1,streaming=True),None))
return history
def bot(history,message):
if message["text"] is not None:
txt_ai=get_answer_ai(message["text"] )
history[-1][1]=txt_ai#((None,txt_ai))
response_audio = genrate_speech(txt_ai,'wasmdashai/vits-ar-sa-A')
history.append((None,gr.Audio(response_audio,scale=1,streaming=True)))
return history, gr.MultimodalTextbox(value=None, interactive=False)
fig = random_plot()
# متغير لتخزين سجل المحادثة
with gr.Blocks() as demo: # Use gr.Blocks to wrap the entire interface
gr.HTML("""
<head>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<!-- Bootstrap CSS -->
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/css/bootstrap.min.css" rel="stylesheet"
integrity="sha384-EVSTQN3/azprG1Anm3QDgpJLIm9Nao0Yz1ztcQTwFspd3yD65VohhpuuCOmLASjC" crossorigin="anonymous">
<title>Wasm-Speeker</title>
</head>
""")
# العنوان الرئيسي
gr.Markdown("# Wasm-Speeker: إطار الذكاء الاصطناعي لتوليد الكلام")
# عرض الصورة الترحيبية
gr.Image("9588e6d4-9959-4cfc-9697-fc9b996fcd97.jpeg", label="Wasm-Speeker")
# إضافة CSS لجعل التبويبات RTL
gr.HTML("""
<style>
.gradio-tabs,body,div{
direction: rtl;
}
</style>
""")
with gr.Tab("الصفحة الرئيسية"):
gr.HTML(home_page())
gr.Markdown("## مميزات Wasm-Speeker")
with gr.Row():
with gr.Column():
gr.Markdown("### 🛠 التخصص في اللهجة السعودية")
gr.Markdown("Wasm-Speeker متخصص في إنتاج أصوات واقعية للهجة السعودية.")
with gr.Column():
gr.Markdown("### 🎯 سهولة التدريب")
gr.Markdown("يتميز Wasm-Speeker بسهولة التدريب وقابلية التوسع.")
with gr.Column():
gr.Markdown("### ⚖️ الأداء المتوازن")
gr.Markdown("يوفر أداءً متوازناً يجمع بين الجودة والسرعة.")
with gr.Row():
with gr.Column():
gr.Markdown("### ⚡️ الاستخدام الفعال للموارد")
gr.Markdown("تم تصميمه لاستخدام الموارد بفعالية وكفاءة.")
with gr.Column():
gr.Markdown("### 🌍 الشعبية والانتشار")
gr.Markdown("نموذج واسع الانتشار بين المطورين في تطبيقات مختلفة.")
with gr.Column():
gr.Markdown("### 💾 حجم النموذج")
gr.Markdown("يحتوي النموذج على 36.3 مليون باراميتر.")
gr.HTML(footer())
with gr.Tab("ChatBot "):
chatbot = gr.Chatbot(
elem_id="chatbot",
bubble_full_width=False,
scale=1,
)
chat_input = gr.MultimodalTextbox(interactive=True,
file_count="single",
placeholder="Enter message or upload file...", show_label=False,)
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot])
bot_msg = chat_msg.then(bot, [chatbot, chat_input], [chatbot, chat_input], api_name="bot_response")
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
chatbot.like(print_like_dislike, None, None)
# audio.change(chatbot_fn, [txt, audio], chatbot)
with gr.Tab("Chat AI "):
gr.Markdown("## AI: محادثة صوتية بالذكاء الاصطناعي باللهجة السعودية")
with gr.Row(): # Arrange input/output components side-by-side
with gr.Column():
text_input = gr.Textbox(label="أدخل أي نص")
with gr.Column():
model_choices = gr.Dropdown(
choices=[
"wasmdashai/vits-ar-sa",
"wasmdashai/vits-ar-sa-huba",
"wasmdashai/vits-ar-sa-ms",
"wasmdashai/vits-ar-sa-A",
"wasmdashai/vits-ar-sa-fahd",
],
label="اختر النموذج",
value="wasmdashai/vits-ar-sa-huba",
)
with gr.Row():
btn = gr.Button("إرسال")
btn_ai_only = gr.Button("توليد رد الذكاء الاصطناعي فقط")
with gr.Row():
user_audio = gr.Audio(label="صوت المدخل")
ai_audio = gr.Audio(label="رد AI الصوتي")
ai_text = gr.Textbox(label="رد AI النصي")
ai_audio2 = gr.Audio(label="2رد AI الصوتي",streaming=True)
# Use a single button to trigger both functionalities
def process_audio(text, model_choice, generate_user_audio=True):
API_URL = f"https://api-inference.huggingface.co/models/{model_choice}"
text_answer = get_answer_ai(text)
text_answer = remove_extra_spaces(text_answer)
data_ai = genrate_speech(text_answer,model_choice)#query(text_answer, API_URL)
if generate_user_audio: # Generate user audio if needed
data_user =genrate_speech(text,model_choice)# query(text, API_URL)
return data_user, data_ai, text_answer
else:
return data_ai # Return None for user_audio
btn.click(
process_audio, # Call the combined function
inputs=[text_input, model_choices],
outputs=[user_audio, ai_audio, ai_text],
)
#
btn_ai_only.click(
generate_audio_ai,
inputs=[text_input, model_choices],
outputs=[ai_audio2],
)
with gr.Tab("Live "):
gr.Markdown("## VITS: تحويل النص إلى كلام")
with gr.Row():
speaker_id_input = gr.Number(label="معرّف المتحدث (اختياري)", interactive=True)
with gr.Column():
model_choices2 = gr.Dropdown(
choices=[
"wasmdashai/vits-ar-sa",
"wasmdashai/vits-ar-sa-huba",
"wasmdashai/vits-ar-sa-ms",
"wasmdashai/vits-ar-sa-A",
"wasmdashai/model-dash-fahd",
],
label="اختر النموذج",
value="wasmdashai/vits-ar-sa-huba",
)
text_input = gr.Textbox(label="أدخل النص هنا")
generate_button = gr.Button("توليد وتشغيل الصوت")
audio_player = gr.Audio(label="أ audio",streaming=True)
# Update the event binding
generate_button.click(generate_audio, inputs=[text_input,model_choices2], outputs=audio_player)
with gr.Tab("T2T "):
gr.Markdown("## T2T")
text_inputk = gr.Textbox(label="أدخل النص هنا")
text_out = gr.Textbox()
text_inputk.submit(t2t, [text_inputk], [text_out])
with gr.Tab("T2TSTREAM "):
gr.Markdown("## T2TSTREAM ")
text_inputk2 = gr.Textbox(label="أدخل النص هنا")
text_out1 = gr.Textbox()
text_inputk2.submit(t2tstream, [text_inputk2], [text_out1])
with gr.Tab("T2S "):
gr.Markdown("## T2S ")
model_choices3 = gr.Dropdown(
choices=[
"wasmdashai/vits-ar-sa-huba-v1",
"wasmdashai/vits-ar-sa-huba",
"wasmdashai/vits-ar-sa-ms",
"wasmdashai/vits-ar-sa-A",
"wasmdashai/vits-ar-sa-huba-v2",
],
label="اختر النموذج",
value="wasmdashai/vits-ar-sa-huba",
)
text_inputk3 = gr.Textbox(label="أدخل النص هنا")
oudio_out1 =gr.Audio()
text_inputk3.submit(t2s, [text_inputk3,model_choices3], [oudio_out1])
if __name__ == "__main__":
demo.launch(show_error=True)